RAEsTANTIA PER SCIENTIAM

P

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

A STUDY INTO DISCONTINUOUS GALERKIN
METHODS FOR THE SECOND ORDER WAVE
EQUATION

by
Benjamin J. Davis
June 2015

Thesis Co-Advisors: Jeremy E. Kozdon
Lucas C. Wilcox

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
06-19-2015 Master’s Thesis 06-30-2013 to 06-19-2015

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A STUDY INTO DISCONTINUOUS GALERKIN METHODS FOR THE SECOND

ORDER WAVE EQUATION

6. AUTHOR(S)
Benjamin J. Davis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Naval Postgraduate School
Monterey, CA 93943

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER
N/A

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 words)

There are numerous numerical methods for solving different types of partial differential equations (PDEs) that describe the physical
dynamics of the world. For instance, PDEs are used to understand fluid flow for aerodynamics, wave dynamics for seismic exploration,
and orbital mechanics. The goal of these numerical methods is to approximate the solution to a continuous PDE with an accurate
discrete representation. The focus of this thesis is to explore a new Discontinuous Galerkin (DG) method for approximating the
second order wave equation in complex geometries with curved elements. We begin by briefly highlighting some of the numerical
methods used to solve PDEs and discuss the necessary concepts to understand DG methods. These concepts are used to develop a
one- and two-dimensional DG method with an upwind flux, boundary conditions, and curved elements. We demonstrate convergence
numerically and prove discrete stability of the method through an energy analysis.

14. SUBJECT TERMS 15. NUMBER OF
Discontinuous Galerkin, Acoustic Wave Equation, Finite Element Method, Numerical Methods for PDEs PAGES 15]

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified uu
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

il

Approved for public release; distribution is unlimited

A STUDY INTO DISCONTINUOUS GALERKIN METHODS FOR THE
SECOND ORDER WAVE EQUATION

Benjamin J. Davis
Captain, United States Army
B.S., United States Military Academy, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL

June 2015
Author: Benjamin J. Davis
Approved by: Jeremy E. Kozdon

Thesis Co-Advisor

Lucas C. Wilcox
Thesis Co-Advisor

Craig W. Rasmussen
Chair, Department of Applied Mathematics

1ii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

There are numerous numerical methods for solving different types of partial dif-
ferential equations (PDEs) that describe the physical dynamics of the world. For
instance, PDEs are used to understand fluid flow for aerodynamics, wave dynam-
ics for seismic exploration, and orbital mechanics. The goal of these numerical
methods is to approximate the solution to a continuous PDE with an accurate dis-
crete representation. The focus of this thesis is to explore a new Discontinuous
Galerkin (DG) method for approximating the second order wave equation in com-
plex geometries with curved elements. We begin by briefly highlighting some of
the numerical methods used to solve PDEs and discuss the necessary concepts to
understand DG methods. These concepts are used to develop a one- and two-
dimensional DG method with an upwind flux, boundary conditions, and curved
elements. We demonstrate convergence numerically and prove discrete stability of

the method through an energy analysis.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 An Introduction to Solving Partial Differential Equations

1.1 Finite Difference Method
1.2 Finite Volume Method
1.3 Finite Element Methods.

2 Discontinuous Galerkin Foundation

2.1 Interpolation
2.2 Integration
2.3 Concept of the Mass Matrix
2.4 Concept of the Differentiation Matrix
2.5 Changeof Variables

3 One-Dimensional Discontinuous Galerkin

3.1 One-Dimensional Grid
3.2 Variational Form.
3.3 TestFunctions.
3.4 One-Dimensional Discretization
3.5 Numerical Flux

3.6 One-Dimensional Discontinuous Galerkin Results

4 Two-Dimensional Discontinuous Galerkin

41 Two-Dimensional Grid
4.2 Two-Dimensional Discretization
4.3 Two-Dimensional Numerical Flux

4.4 Two-Dimensional Discontinuous Galerkin Results

5 Energy Conservation

5.1 Basic Theory of Energy Conservation.

5.2 Two-Dimensional Energy Analysis.

Vil

B W =

N3

11
13
14

17
17
18
20
21
23
27

33
33
36
42
44

49
49
50

6 Conclusion 59

6.1 FutureWork.o 000 60
Appendix A Interpolation and Integration 61
A1l Imterpolationo 61
A2 Integrationo 000 63
Appendix B One-Dimensional Discontinuous Galerkin 65
Appendix C Two-Dimensional Discontinuous Galerkin 79
List of References 131
Initial Distribution List 133

viil

List of Figures

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 3.1
Figure 3.2

Figure 3.3

Figure 3.4
Figure 3.5

Figure 4.1

Figure 4.2

Figure 4.3
Figure 4.4
Figure 4.5

Lagrange Interpolation of e~ at different sets of LGL points

for various polynomial ordersof N.

Approximation Error based off (2.5), (2.6), and (2.7) measured
at polynomial orders N =1 through N = 40.

Numerical Integration Error evaluated with the Euclidean
Norm vs. the N order quadrature.

Physical Space to Computational Space

One-Dimensional Grid with N=6and Ne=3.
One-Dimensional Element Boundary

One-Dimensional Element Boundary Decoupled Wave Prop-
agation

Convergence Rates For N =4,6,8 at Ne=2,4,8,16
Convergence Rates For N =16atNe=2,4,8
Example Mapping of a Quadrilateral Element in Two Dimen-

sions with Degrees of Freedom for N=2.

Example Two-Dimensional Flux Boundary on a Quadrilateral
withN=2.
Example Two-Dimensional Washer Grid: Ne=8.
Convergence Rates For N=2,4,6,8

Convergence Rates For N=10,12

iX

10
15

18
24

26
29
31

33

42
45
46
48

THIS PAGE INTENTIONALLY LEFT BLANK

List of Tables

Table 3.1
Table 3.2
Table 3.3

Table 4.1
Table 4.2
Table 4.3

Discontinuous Galerkin Tested Information

Convergence Rates for N = 4,6,8

Convergence Rate for N =16 . .

Discontinuous Galerkin Tested Information

Convergence Ratesfor N =2,4,6,8

Convergence Rate for N = 10, 12

X1

28
30
30

46
47
47

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

CG

DG

FDM

FEM

FVM

LGL

NPS

ODE

PDE

RK54

Continuous Galerkin
Discontinuous Galerkin

Finite Difference Method
Finite Element Method

Finite Volume Method
Legendre—Gauss—Lobatto
Naval Postgraduate School
Ordinary Differential Equation
Partial Differential Equation

Runge—Kutta Five Stage Fourth Order

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

Acknowledgments

I humbly express my gratitude to the members of the Department of Mathematics at
the Naval Postgraduate School; you are an amazing group of individuals who have
significantly helped me through the rigors of mathematics for the past two years.
Professor FEX. Giraldo, I thank you for opening the world of Galerkin methods to
me. Your course is one of the most challenging that I faced during my time with this
department and the skills I learned greatly assisted me in completing this thesis. To
my advisors: Assistant Professor Lucas Wilcox, I appreciate your patience, support,
and advice throughout my thesis work; Assistant Professor Jeremy Kozdon, I can
not thank you enough for your instruction, mentorship, and unwavering patience
with me. I will always remember the numerous discussions and enormous amount
of mathematical wisdom that you bestowed upon me. You are truly a master of
your craft, a phenomenal instructor, and most importantly, a great person. Thank

you.

To my wonderful wife: Allison, thank you for your love, understanding, and
encouragement these past two years. Thank you for putting up with my numerous
late nights and long hours. You are truly amazing, Little Red, and I love you with

all my heart.

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

CHAPTER 1:
An Introduction to Solving Partial Differential
Equations

There are numerous numerical methods for solving different types of partial dif-
ferential equations (PDEs) that describe the physical dynamics of the world. The
goal of these numerical methods is to approximate the solution to the continuous
PDE with a discrete representation [1]. Three notable methods are Finite Difference
Methods (FDMs), Finite Volume Methods (FVMs), and Finite Element Methods
(FEMs). Two common FEMs are Continuous Galerkin (CG) and Discontinuous
Galerkin (DG), each of which comprises an element-based approach to solving a
set of equations. The main focus of this thesis is to explore a new DG method, in-
troduced by Appeld and Hagstrom [2], for approximating the second-order wave
equation. However, my research differs from that of Appeld and Hagstrom by
using a nodal form of DG with provable stability on curved elements with complex

geometries.

1.1 Finite Difference Method

Finite difference methods are one of the simplest and oldest methods for solving
partial differential equations [1]. Furthermore, it is arguably one of the most used
methods for discretizing partial differential equations [3]. There is an enormous
amount of published information about FDMs in various scholarly journals and
books. This section describes only the basics of FDMs, and the interested reader
is directed to, for instance, Gustafsson, Oliger, and Kreiss [4]. Finite difference
methods focus on approximating the derivatives of the solution directly at a set of
points in a domain. In terms of the calculus of finite differences, we are looking to
approximate the derivatives by linear combinations of the function values along a
grid of points [5].

One method of constructing the discretization is accomplished by a Taylor series

expansion on a selected set of equally spaced points (i.e.,... <xj_1 <x; <Xj41 <...).

For instance, suppose you wish to approximate the derivative of a function evalu-
ated at x; using grid points x;_; and x;;1. By conducting a Taylor series expansion
of the neighboring values around x;, we can construct a linear combination to get

an accurate approximation of the derivative.

For example, let us consider the one-dimensional advection equation,

du Jdu
—+=—=0, 1.1
ot ox D
where u = u(x, t) is the solution. We assume an appropriate set of initial conditions
and boundary conditions for u(x,t). Using the center stencil, we can Taylor expand
in space around x;, with grid spacing Ax, to find a derivative approximation for %,

where u; = u(x;,t) [3]. Starting with

du; Ax?u;

Ujp1 = U;j + Axa—xl + T 89{21 + O(Ax3), (12)
ou; Ax? %u; 3

U1 =u;— AXX + T o2 + O(AX), (13)

(ui+1 and u;_; are not boundary points) and taking the linear combination of (1.2)
and (1.3) yields

duj Ui — Ui

2
= S0, (1.4)

which can be substituted into (1.1) to yield a system of ordinary differential equa-
tions. Lastly, we can solve these ODEs computationally through a numerical

integration scheme, such as Runge-Kutta, where

du; Juj Ui — Ui
— =R 1.

ot ox 2nx (1.5
Another method for constructing difference formulas is to build a polynomial
interpolant through the given grid of points, such as using Lagrange polynomials,
and evaluating the derivative of this polynomial. For instance, using the grid of

points [x;_1,%;,x;4+1], we have the interpolant

1

Pa) =) i), (1.6)

k=-1

where Li(x) is the Lagrange polynomial (see Section 2.1). The derivative approxi-
mation is then

1
Ju; : Ui — Ui
o k—Z—‘1 L (xi)ujpp = T oar (1.7)

which is substituted back into (1.1). The Taylor series approach and the polynomial

approach are equivalent when the maximum number of error terms are eliminated

from the linear combination.

1.2 Finite Volume Method

Finite volume methods differ from FDMs in that instead of seeking pointwise
solution values, we are seeking the average values over the elements using approx-
imations. Depending on the dimension of the problem, examples of elements are
cubes, triangles, or intervals, all organized in an unstructured fashion across the
physical domain [1]. From the average values, the solution is reconstructed in or-
der to evaluate a numerical flux to tie neighboring elements together and produce
an approximation for the entire system. There are numerous FVMs and here we
only discuss the very basics; interested readers are directed to LeVeque [6] for more

information.

Let us again consider (1.1) on a domain that is represented by a collection of
elements. For this example, let us use elements on a one-dimensional domain and
each element is denoted by the index i. Let us further define a different set of
notation with ‘3—’; =u; and ‘;—Z = uy. Therefore, (1.1) becomes u; = —u,. Generally, the

average value of # on an element is

1 R
Qi(t):?xﬁ. u(x,t) dx (1.8)

where Ax, in this case, is the distance between the left and right boundaries of
the one-dimensional interval and Q;(#) is the spatial average value of u on the i*"
element. If we were using cube-shaped elements, then Ax would be the area of the

cubic element. If we take the derivative of (1.8) with respect to time, we find

Qi 1 (N
Qi _ —f uy dx (1.9)
dt AX Li
and since u; = —u,, we can substitute —u, to obtain
dQ; 1 (N
=—— d 1.10
dt AX ‘L e 02 (1.10)

and integrate (1.10) to find an equation to build an approximation to the system:

% = —é [u(R;, t) —u(L; t)]. (1.11)
Equation (1.11) is an update equation for the average value of the solution in
the it element, where the time derivative of the average value changes through
the fluxes of the left and right boundaries of the element. There are a variety of
numerical flux methods to accomplish this approximation. One method is the first
order upwinding method, meaning that we select the average value of the interval
always on the “upwind” side. This topic is discussed in further detail in Chapter 3.
Ultimately, the FVM uses the average element values from across the domain to

reconstruct an approximation for the system.

1.3 Finite Element Methods

Just like FDMs and FVMs, there are many different FEMs used to solve PDEs.
Similar to the FVM, the physical domain is mapped into a reference domain of
various sized geometrically flexible elements known as the grid. After the grid is
built, one of the many different FEMs is applied to solve the system. As discussed
at the beginning of this chapter, the FEM that is the focus of this paper is known as
a Galerkin method. There are two main categories of Galerkin methods, Bubnov-
Galerkin and Petrov—Galerkin [7]. With Petrov—Galerkin, the test functions and

basis functions are different, where with Bubnov—Galerkin, the test functions and
basis functions are the same and reside in the same space [1, 7]. We discuss
basis functions and test functions further in later chapters. For this paper, we be
focusing on Bubnov-Galerkin methods, often called simply Galerkin methods [7].
As discussed before, the two main categories of Galerkin methods are Continuous
Galerkin (CG) and Discontinuous Galerkin (DG). Both methods use an elemental
approach to solving the system in integral form, but the difference between DG
and CG is mainly whether the continuity between the elements is enforced strongly
or weakly. In the following two paragraphs, let us lightly touch on both methods
to give the reader a small insight into each method before focusing the rest of the
paper entirely on element-based DG.

When using CG, we build a computational domain subdivided into various-sized
elements, similar to FVM. However, within each element we use specially selected
degrees of freedom. For example, in the one-dimensional sense, the degrees of
freedom could be a grid of points across the cell. There are many different ways
to build this grid of points, such as using Legendre-Gauss points, equally spaced
points, as discussed in FDM, or some other combination or method. For the purpose
of this research, we use Legendre—Gauss—Lobatto (LGL) points. These are discussed
in further detail in later chapters, but they are a set of points that cluster toward
the boundaries of each element and include points at the boundaries. Discretizing
the integral form of this equation yields a semi-discrete scheme with elemental
test functions [1]. These test functions are continuous across the domain in CG
since we enforce the element boundary points to be equal between neighboring
elements [3]. Each element has its own set of LGL points; however, using CG
enforces the solution at the element boundaries to be continuous and this yields a
global mass matrix. This global mass matrix is for the entire domain and must be
inverted to solve time-dependent problems; this can be computationally expensive,
depending on the type of problem [1].

Generally, DG is similar to CG in requiring numerical interpolation and integration
as well as building the same computational domain; however, one of the main

differences comes from the elemental boundaries. In CG, we require the boundaries

tobe continuous, while in DG they are discontinuous and the continuity is enforced
weakly. The domain in DG is still represented by a collection of elements; the
union of these elements is accomplished through a numerical flux similar to FVMs.
Discontinuous Galerkin still uses the same space of basis and test functions, similar
to FEMs, and each element boundary has its own set of degrees of freedom [1].
Therefore, the solution is typically represented by a set of piecewise polynomials
that are discontinuous at the element boundaries. The numerical flux, which is
discussed in greater detail later, resolves this discontinuity to assist in finding
the final solution. Furthermore, the mass matrix is constructed locally instead of
globally and this allows it to be inverted at a reduced computational cost, yielding
a semidiscrete scheme that is explicit [1]. Discontinuous Galkerin is the method
used for the following study.

CHAPTER 2:
Discontinuous Galerkin Foundation

In this chapter, the information and terminology maybe confusing to the reader
who has no knowledge of Galerkin methods. However, just like pulling out a
road map in a foreign country, the intent is to show a DG road map and apply
these concepts to a one-dimensional and a two-dimensional problem in subsequent
chapters. Initially, this road map may speak a different language to the reader, as
expected for anyone new to this numerical method; however, by the end of this

chapter the intent is for the DG foundation to be clear and understandable.

2.1 Interpolation

In order to fully implement DG, we first need to construct the building blocks.
This leads to polynomial interpolation [3]. Nodal interpolation is the construction
of an N* degree polynomial, fy(x), that is equal to a given function, f(x), when
evaluated at a set of x; points, with i =0,...,N, that is fn(x;) = f(x;) [7]. There are
many different interpolation methods and our focus for this section is Lagrange

interpolation.

Let us explain Lagrange interpolation through an example. We are going to ap-

proximate the following Gaussian function in one dimension,
fo)=e®, xel-1,+1]. 2.1)

We begin by generating a grid of LGL points across the given domain in one
dimension. As discussed in Section 1.3, LGL points are a specially selected set of
points that includ the boundaries and cluster toward the ends of the domain. This
clustering of points toward the ends of the domain assists in avoiding the Runge’s
phenomenon during the approximation, which is the oscillation of an interpolation
near the boundaries. This phenomenon is evident when equally spaced grid points
are used with high polynomial orders. Therefore, clustering points toward the ends

of the domain helps improve the interpolation [8]. After the grid of LGL points is

generated, we construct the Lagrange basis functions, L;(x), by the equation

NI
Li(x):H(x‘ x’), i=0,...,N, (2.2)

where x; are the LGL points defined on the domain [-1,+1]. Using (2.2) for all
the LGL points in the domain generates a set of N order polynomial basis func-
tions associated with each point x; in the domain. With these basis functions, the

approximation fy(x) is

N
fu@) =Y Liof, (23)
i=0
where f; = f(x;) fori=0,...,N. Moreover, since (2.2) has the cardinal property
1 fori=j
L:(x:) = , 24
i) {O fori#j @4

we have the interpolation property f; = fy(x;). In the end, fy(x) is an N** order
polynomial approximation for f(x).

We now return to finding an approximation for representing (2.1). Figure 2.1
shows the polynomial interpolation of (2.1) using N =2, 4, 8, and 16 with N+1

LGL interpolation points. In Figure 2.2, we consider the error norms

Y20 |) — fGe) |

lelln = 2.5
o YO T f(0)| 29
50 SN £ \\2
el Jzkﬂ(f;g(xk{ fla? 26
Zkzl(f(xk))2
lell = maxj <<50 |fN(9?k)—f(3?k)|, 2.7)

maxq<k<s0 | f(£x) |

where we have used an equally spaced grid of 50 points, £, within the domain
[-1,+1]. Figure 2.2 displays the error norm of N =1 through N = 40 polynomial

interpolations.

As you can see in Figure 2.1, the 16"~ order polynomial interpolation does a good
job approximating the function as compared to the exact solution (denoted by * to
differentiate from the various interpolations). In Figure 2.2, we show the error in
the interpolation vs. the N order polynomial interpolant based off of (2.5), (2.6),
and (2.7). As the figures show, the approximation gets to machine precision around
the 32" order polynomial. Lastly, the reason that Figure 2.2 has various plateaus

within the convergence rate is because f(x) is an even function.

T T T T ¥ T T T T 0 T T T T T T T
——N=2 N ——I1 Norm
09 N=4 |1) - ——I2 Norm
—N=8 107 - Inf Norm |

08t ——N=16(4
Exact o
07 B 104 F —\
061 1 10°F =\

05 1 \

f(x)
Error
J

04F , \
\

0|
03k 1 10 -\
02} 4 —\
1012} \

wtf N

01! L L L L L L L L L 1016

Figure 2.1: Lagrange Interpolation of e+ at Figure 2.2: Approximation Error based
different sets of LGL points for various poly- off (2.5), (2.6), and (2.7) measured at poly-
nomial orders of N. nomial orders N = 1 through N = 40.

2.2 Integration

The next building block for DG is the ability to conduct numerical integration.
When performing numerical integration, also known as quadrature, the analysis is
similar to that of interpolation. Integrating the Lagrange interpolation (2.3) gives

the integral approximation

+1

+1 +1 N N
j: 1 fu()dx = j: 1 ;Li(x)ﬁdx:; £(x) I 1 Li(x)dx. (2.8)

Defining the quadrature weights

+1
w; = f L;(x)dx (2.9)

1

gives the numerical integration method [8]

+1 N
f 1 Fu()dx = Zwi fi (2.10)
- =0

These quadrature weights only have to be precomputed once with the LGL points
and not at each evaluation of a particular integral [8]. Figure 2.3 is the comparison

108 -

Error

100 -

1012 |

10—16

Figure 2.3: Numerical Integration Error evaluated with the Euclidean Norm vs. the N order
quadrature.

of the numerical integration approximation to the actual value of f_ +11 4y ~
0.882081. The Euclidean Norm is used for the calculation of the error due to the
integration of f(x) producing a scalar. As you can see, the error decreases to
machine precision around the 18" order quadrature.

10

In comparing Figure 2.2 to Figure 2.3, we see that when using the same order
polynomial, integration is more accurate than interpolation. In general, using
N +1 points, we can construct an N** order polynomial. Since we fixed the LGL
points at the boundaries, -1 and +1, there are only N —1 LGL points left to choose.
We also have N + 1 quadrature weights to choose. Therefore, we have N —1 points
and N + 1 weights, which means there are 2N degrees of freedom. We can thus set
the degrees of freedom so that we integrate a polynomial of order 2N —1 exactly
(as this polynomial has 2N coefficients) [3]. For example, we can exactly integrate
a fifth degree polynomial using N +1 =4 LGL points; even though we can only
construct a third-order interpolating polynomial using these points.

2.3 Concept of the Mass Matrix

After discussing interpolation and integration, let us now consider the concept
of the mass matrix. The mass matrix, denoted by M, is used for integration.
We discuss the integration of the product of two interpolants exactly and inexactly.
Using exact integration results in a full mass matrix, while using inexact integration
results in a diagonal mass matrix. For example, suppose we wanted to integrate
f(x) with a test function, ¢(x),

+1
[o, @.11)

over the domain of a single element from [-1,+1]. Test functions are defined in
further detail in Section 3.3, but for this section all we need to consider is that 1(x)

is a function that resides in the same space as f(x).

Suppose both ¢(x) and f(x) can be numerically approximated with Lagrange poly-
nomials. Then

N

D) = Pn(x) = Z (x;)Li(x) and (2.12)
1&0

f6) % ful) =) FlrL). (2.13)
=0

11

This leads to the integral approximation

+1 +1 +1 N N
f FOp)dx ~ f @Y = f FENLOLI@TY)z,
-1 -1 -1 %20 j=0
which is further simplified to
N N +1
ZZ¢(xj>| f Li<x>Lj<x>dx]f<x,->=¢TM€f, (2.14)
i=0 j=0 -1
where
+1
f Li(x)L]-(x)dx = Mle-]' (2.15)
-1

and M is a full matrix per element that can integrate an order 2N function exactly.
Furthermore, 1 and f are the evaluation of 1(x) and f(x) at the LGL points stored

in column vectors:

f(xo0) P(x0)
fo f(ffl) oy IP(:xl) .
flxn) P(xn)

Inexact integration is similar to exact integration. Instead of numerically approxi-
mating the functions separately with Lagrange polynomials as seen above, we first
multiply the function and test function together at the LGL points and produce a

new interpolant for numerical integration:

+1 N N

+1
[wneaes [Y fepeaLmin =Y fpe. @19
- =0 i=0

Once again L;(x), under integration, generates the weights, w;, as seen in (2.9),

and w; is only computed once at the LGL points. These weights can be stored

12

in a diagonal mass matrix, called M, and used in an one-dimensional problem.

Therefore, (2.11) can now be written in the matrix form below:

+1
I | S Y Mf. (217)

As discussed in Section 2.2, using this method with LGL points allows us to inte-
grate a polynomial order of 2N —1 exactly. Throughout the remainder of this thesis,
we only consider inexact integration. This is because the diagonal structure of the
mass matrix greatly simplifies the implementation of the method. Additionally, the
Jacobians and surface Jacobians are easier to handle when moving into multiple
dimensions. We discuss more about Jacobians and surface Jacobians in subsequent
sections and chapters.

2.4 Concept of the Differentiation Matrix

The differentiation matrix has a purpose similar to that of the mass matrix, but it is
obviously used for differentiation. Like the mass matrix, the differentiation matrix
is found using Lagrange polynomials by

ij= dL—éiXi)' (2.18)
dfu(x) o dLi(x) N
ax ; ——fi= ;Dijfj/ (2.19)

where it should be evident from (2.19) that Df approximates % at all the nodes.
As you can see, D is simply the derivative of the Lagrange polynomials evaluated
at the LGL nodes. You should further notice that D is a full matrix.

Let us examine how the differentiation matrix is used for discretization. Consider
the integral

df)
Il ?w(x)dx, (220)

where 1(x) is a test function that resides in the same space as f(x). Once again, the

13

functions are numerically approximated with a set of Lagrange polynomials

N
UnG) &) PELix), (2.21)
i=0
dfv@) o o dLi)
z = LS (222)
leading to
df) TN L)
I | Ve f 1 ;)‘j:of(xi)ITLj(X)]w(xj)dx’ (223)
which further simplifies to
N N +1 d ;
Z¢(xj) [f %Lj(x)dxl £(x;) ~ pTMDF. (2.24)
i=0 j=0 -1

As you can see, (2.18) is nestled right in the middle of (2.24). Once again, both
and f are the evaluation of ¢(x) and f(x) at the LGL points.

2.5 Change of Variables

Mapping from a physical space to a computational reference space requires a
change of variables. In this case, we are going to map from x € [x;,x,41] to £ €
[-1,+1], where n =0,...,N. Furthermore, a Jacobian arises when conducting this
change of variables [9]. In one dimension, the Jacobian is simply %, where the
element size is h = Ax for an equally spaced grid of elements. This one-dimensional
Jacobian is used extensively in Chapter 3 for discretization and is annotated by
J= % In two dimensions, it is a little more complicated and is discussed in greater
detail in Chapter 4. However, the concept remains the same for one dimension and

two dimensions.

In one dimension, we want the computational reference domain to be from ¢ €

[-1,+1] for two points from a linear element, x,, and x,,1. This concept is depicted

14

in Figure 2.4.

z
Xn Xn+1 Eo=-1 & =+1

Figure 2.4: Physical Space to Computational Space

The change of variables for Figure 2.4 is obtained by a linear combination

(&) = (@)xn + ((1 er E))xm, (2.25)

that allows us to approximate the coordinates of the element. For example, if £ = -1
in (2.25), then that maps to x,, and if £ = +1, that maps to x,,4+1. Taking the derivative
of (2.25) yields

dx _ (Xpe1—Xn) _h

i > =5 (2.26)
and dx = %d& [3]. Therefore, using (2.25) and (2.26) for the change of variables for

integration gives

Xn+1 +1
f f(x)dx = j: 1 gf(x(é))dé, (2.27)

where x, and x,,; are the left and right boundaries for the physical element.
Constructing this change of variables for each element is a key foundation for local
element based Galerkin methods. Instead of building different matrices for each
element and solving them individually, we can now construct the required matrices
for a reference element and then use the metrics terms to scale the reference element
to the physical space [3]. Metric terms are discussed in greater detail in Chapter
4. As for using the differentiation matrices, D, the change of variables requires the
‘;—i = % multiplied by Z—g = %, cancelling these terms out.

The equation below is a visual example for the above sentence showing the change

chain rule, which creates a

15

of variables for (2.20):

X141 d +1 d +1 d
v TP = [pefE LT X~ [y e < ymuny

This section assists in the construction of the one-dimensional grid further investi-

gated in Section 3.1.

16

CHAPTER 3:
One-Dimensional Discontinuous Galerkin

Let us start working through the Discontinuous Galerkin method for the linear

acoustic wave equation in one dimension. Consider the equation

*p

L=V xeacR, 150, (3.1)

where p is the pressure, c > 0 is the wave speed, and d is the spatial dimension. On
the boundary, represented by d(3, we impose periodic boundary conditions. We
are now going to split this second-order wave equation into two equations with

the auxiliary variable, @, equalling the time derivative for pressure [2]:

Jw

— 2v72
W vy, (32)
op

3.1 One-Dimensional Grid

Figure 3.1 shows an example of a one-dimensional grid of equally spaced elements,
with polynomial order N = 6 and three elements, covering Q) = [-1,+1]. The LGL
points, depicted by red X symbols, are used for the interpolation points per element.
Polynomial order, N, is defined as the maximum order of a polynomial that can be
represented exactly on each element. Obviously, the grid varies depending on N
and number of elements (Ne). As you can see, the LGL points are not evenly spaced
across the individual elements and cluster towards the boundaries of each element.
There are N + 1 LGL points per element, where each element is represented by Q;,
with j=1,...,Ne. Remember, this is a one-dimensional grid with Q =[-1,+1]
and each element (€2;) is mapped to & € [-1,+1] through a change of variables, as
discussed in Section 2.5. This one-dimensional grid is simple; however, in two
dimensions, the grid is a little more complicated and is discussed in Chapter 4.

17

| | | (
| i i J

-0.333 +0.333
-1 +1

Figure 3.1: One-Dimensional Grid with N = 6 and Ne = 3.

3.2 Variational Form

Understanding (3.2) and (3.3) motivates the variational form that is needed for us
to build the set of equations for DG. This section explains the process of finding
the variational form of (3.2) and (3.3). Furthermore, the discretization of these
equations yields the necessary equations for the DG numerical approximation.
First, we need to focus on finding a variational form.

3.2.1 First Variational Equation

Equation (3.4) is the most trivial of the three variational form equations. If % =w,

it follows that
ap)
——w|=0. (3.4)
L5

Using (3.4) in Section 3.4 assists in finding the needed equations for the DG ap-

proximation.

3.2.2 Second Variational Equation
Given that ‘98—(;’ = ¢V?p, by multiplying this equation by a test function, ¢, and
integrating over (); yields

fQ j U (%—‘t‘) - czvzp) =0. (3.5)

We define test functions in further detail in the following section. By conducting

integration by parts on (3.5) and inserting a numerical flux at the boundary of the

18

element, we are able to find the second equation in the variational form to be

9 .
fQ ‘(¢8—?+CZV¢-V;7):C2 fa Qj¢n-(Vp). (3.6)

]

For notation purposes, a * term in the equation identifies the numerical flux. Using a
numerical flux is a numerical technique for coupling the elements that is commonly
used in DG. For example, (Vp)* is the coupled numerical flux computation for the
gradient of the pressure at the boundaries (JQ2;) for neighboring elements within
the domain. An explicit computation of the numerical flux is discussed in greater
detail in Section 3.5.

3.2.3 Third Variational Equation
In order to find the last variational equation, we are going to multiply the gradient

of (% — a)) with the gradient of a test function (Vi):

dp B dp B
fQjV‘W(E_w)‘LJ,V‘WE_LVW“‘O' (3.7)

]

Let us focus on the last portion of (3.7). By conducting integration by parts we find

[vovos [, oo [(e o

]

By introducing a numerical flux to the boundary term of (3.8) and substituting it
into (3.7), we find that

d
fgj YV fagj (Vp-mjw'+ fQj (V¢)o=o0. (39)

Let us focus now on the last term from (3.9). Conducting integration by parts again

on the last portion of (3.9) yields

Lj(v2¢)wZJ;Qj(VtP-n)w—L‘VWw. (3.10)

]

19

Next, we substitute (3.10) back into (3.9) and combine like terms to conclude the

following:
Ip .
f VYV— —f (Vi -n) (0 —w) —f ViyVw = 0. (3.11)
Q; ot Jog, Q
Finally, from (3.11), we arrive at the final variational form
Ip .
f VYV| = —w :f (VY -n) (0" —w). (3.12)
Q; ot 90

Overall, equations (3.4), (3.6), and (3.12) together are the variational form of (3.1)
that we discretize using DG.

3.3 Test Functions

Using Discontinuous Galerkin, we are looking for p and w from (3.2) and (3.3)
that satisfies the variational form found in Section 3.2 for all piecewise polynomial
test functions. Since we are working to build an approximation to a function with
piecewise polynomials, our space is the space of N*'-degree piecewise polynomials,
with the objective of solving for a piecewise polynomial that represents the solution.
For example, suppose we wanted to find a constant approximation for f(x), such
that the error was orthogonal (in an integral sense) to all other constants. That said,
we want to find a € R such that

+1 +1
[vwrwir= [- fan=o,
1 1

forall CeR. If f(x) = x2, then the problem is to find a such that
+1 1 +1
f (Ca—Cx?)dx = [Cax — 5CX3] =0,
-1 -1

which is simplified to

2 1
2Ca—§C—2C(a—§)—O. (3.13)

20

Therefore, a = % is an approximation for x> found using a 0 degree test function

(C). Expanding this concept to DG is essentially the same, except we are using N*'-
degree piecewise polynomials as the test functions to find a N degree polynomial
approximation for the solution on each element. We use this concept for the
remainder of this paper and Section 3.3.1 further highlights the use of test functions
for the discretization in Section 3.4 and Section 4.2.

3.3.1 Test Functions in Discretization

As discussed in the previous section, we are using N*'-degree piecewise polynomi-
als as test functions for DG. In the following section and chapter, we discretize the
variational form to find a discrete approximation for the continuous equation in
one dimension and two dimensions. These discrete approximations, with respect

to 1, all have the similar form of
Y’ (Ap-Bw) =0, (3.14)

where A and B are matrices and p and w are the solution vectors. Since (3.14) holds
for all 1, then Ap — Bw must equal zero. This concept holds true for Section 3.4
and Section 4.2. Therefore, in what follows, @ is not listed in the final discrete

approximations.

3.4 One-Dimensional Discretization

In this section, we derive discrete versions of Equations (3.4), (3.6), and (3.12). The
idea of discretization is to replace a continuous equation with a consistent discrete
approximation. As you have probably noticed, with Galerkin methods we use the
variational form for discretizing equations [3]. We focus on developing a spatial
discretization of the equations and time is integrated separately with a Runge-Kutta
method. We isolate the time derivatives and combine the discrete forms of (3.4)
and (3.12) into one discrete equation [10]. As discussed in Section 2.5, the change
of variables requires the Jacobian of | = % for an equally spaced grid of elements.
As a reminder, the concept from Sections 3.3.1 is applied to the discretization in
Section 3.4.2 and Section 3.4.3. We discretize each equation individually.

21

3.4.1 First One-Dimensional Discretization Equation
Using the concepts established in Chapter 2, the discrete version of (3.4) is

d
1TM]d—’Z ~1"MJw =0, (3.15)

Within (3.15), 1is a vector of ones and is needed because in (3.4) we are integrating
against the function 1(x) = 1 [10]. Additionally, Z—'Z and w are column-vector ap-
proximations of the solution at the grid points. This is similar to f from Section 2.3.

3.4.2 Second One-Dimensional Discretization Equation
The following is the discrete version of (3.6):

dw o j7 27-1 ap\ ap\
MJ]— D" MDyp = — | —eol==] |. 1
Idt+C] MDp =c7] eNaéNeOé’EO (3.16)
The column vectors ey and ey consist entirely of zeros except for the last “row”
in en and the first “row” of ey being ones. Using ey and ep is a way of ensuring

*

that the first and last portion of information from the numerical flux of (g—’g) and
N

(g—g) is used for the calculation. The numerical flux is discussed in greater detail
0
in Section 3.5, but it is essentially a method for coupling the solution on either side

of an element boundary. Additionally, discretization of

LW-VP

]

from (3.6) requires two differentiation matrices; DT takes the derivative of the test
function, M is the integral, and D is the derivative of p. This accounts for the D'MD
portion of (3.16).

3.4.3 Third One-Dimensional Discretization Equation
The following is the discrete version of (3.12):

d
]_1DTMDd—lZ —J 'D"MDw =] 'D"ey (a)}’\] — e{la)) —J'D7eg (a)g — egw) . (3.17)

22

Once again, the fQVyb : V% and fQ,V¢ -V from (3.12) are accounted for by the
]]

DMD portions and w* is computed through the flux at the element boundaries.

3.4.4 Combination of One-Dimensional Discretization Equations
Now that we have three discrete equations, our goal is to get the problem into the
form of two equations and two vector unknowns. Combining (3.15) and (3.17)
yields

(D 107) 2 (D) e ef)
_ D¢, (‘UE _ ega)). |

For notational purposes, 1 is a necessary square matrix of ones of size (N+1,N +1)
because (3.15) is a scalar. Additionally, letting (J'D'MD + 1M]) be equal to the
variable M and simplifying (3.18) produces

d — * * —
M d_rt’ =Myw+] DT (eNa)N - eowo) —7'DT (eNe]f]a) - eoega)). (3.19)
For the second equation, by rearranging (3.16) we can isolate ‘;—(;’ as seen in the
following:

dw 597 27-1 ap\ ap\
M] i J " D'MDp+c] " |en 7). e %)) (3.20)
Equations (3.19) and (3.20) are the two systems of ordinary differential equations

that we solve numerically using a Runge-Kutta method.

3.5 Numerical Flux

When using a DG method, we have to account for the discontinuity that exists
between the elements. Meaning, when each element is represented by a polynomial
for w and p, sampling w and p at the boundary of neighboring elements, as shown in
Figure 3.2, yields different results [3]. The numerical flux is a method for enforcing
(approximately) continuity between the elements. There are multiple flux methods,

but in what follows we only discuss the central and upwinding fluxes.

23

JBP

Figure 3.2: One-Dimensional Element Boundary

The central flux is the easiest method to understand, but it does not necessarily
produce the best results. The central flux is the average of the values at each
boundary element. In Figure 3.2, the neighboring elements, Q); and Q;,1, have
different approximations at the boundary point (BP). For notation purposes, the
superscript (+) represents the left element’s gridpoint and the superscript (—) repre-
sents the right element’s gridpoint. Furthermore, as in Section 3.4, the superscript
(*) denotes the numerical flux term. This notation comes into further use in the

following section and chapters. The central flux, for both w and %, is defined by

the following:
* 1 - +
W =§(a) +w™), (3.21)
op* 1[(dp\" (op\

Using the central flux is a useful beginning step when coding the flux into any
algorithm. The central flux is simple and still achieves convergence when coded
correctly. However, central fluxes often have suboptimal convergence rates and
can lead to oscillatory approximations due to a lack of dissipation. To improve this,
we need a numerical flux that does not just average the information at the element
boundaries, but can account for the physical propagation of information across the

boundaries. This leads us to the upwinding flux.

An upwinding flux is a method for computing a flux across the element boundaries
based on the physical propagation of information. In the acoustic wave equation,
the waves that are propagating through the physical system can move in both

directions across the element boundaries. We are looking at the information that

24

is “upwind” of the wave’s direction of motion, hence called an upwind flux. For
example, for the advection equation, if the wave is moving across the element
boundary from the left to the right, we select the information from the left element
and vice versa for the wave moving from right to left across the boundary. However,
for the wave equation we want to decouple the wave propagation into two one-way
advection equations to take advantage of this “upwind” concept.

Since we are working in one dimension, let us take (3.2) and derive the upwind

flux. Defining the auxiliary variable g = py, we rewrite (3.2) as
Wt = c2qy. (3.23)

Additionally, understanding that py; = pix, we can further deduce that g; = wy and

write a first order system of equations as
q], (1 0]|ql,
By defining U = l }, we simplify the system of equations into a matrix vector form:
q

0 c?
u-Auc=o, A=|; | (3.24)

Solving for the eigenvalues and eigenvectors of A, we find the eigenvalues, A1 =c

and A, = —¢, and the eigenvector matrix (V) and its inverse (V1) to be

— 1 1
V:[C C],a11<:1V_1:{2C1 %]
11 1

2c

We now want to find a linear combination of the original variables, w and q, whose
solutions are independent of each other. We can do this by diagonalizing (3.24):
[vu| -[vav|[vu] =o.

t_

25

We define a new set of variables r; and rp, known as the characteristic variables, by

r=viu=|"
4] ’

and let A be the diagonal matrix of eigenvalues

Ar 0
[V‘lAV]:A:[! }
0 A
We now have a system of first order one-way advection equations that allow us to
upwind because the propagation of the waves are decoupled across the element

boundaries by the characteristic variables, 1 and r,, as seen with

m—Are=0= |1 [t O] (3.25)
g 1’7_t 0 /\2 1’2x 0. .

By analysis of the function within the element, with f; and f, being the initial
conditions for r; and rp, we find that

r1(x,t) = f1(x+ Aqt) = fi(x +ct), and ra(x, 1) = fo(x + Axt) = fa(x—ct),

which further describes the propagation of the wave across the element boundaries
with rq, flowing right to left, and r;, flowing left to right. Figure 3.3 depicts this
propagation. We know the direction of propagation and can now find the flux

values. By letting] =] and 7} = r;, we have chosen the numerical fluxes as the

Figure 3.3: One-Dimensional Element Boundary Decoupled Wave Propagation

26

upwind values. Knowing that r = V~1U, we can easily find a system of equations
to solve. Note that

—
= ~
N —

[—

Il

| o——|

r\:l N I

N

NI—= N—

so with r’i =r] and r;:r; we have
1 1. 1, 1,
1’1 —ZC() +Eq —%a) +§q and (326)
1 1 1 . 1.
e U A A 027

We now have two equations and two unknowns where we can solve for w* and q*:

N I D
g =5 (@ —@)+5(q +q7); (3.28)
W' = %(a)_ +wt)+ % g —-q97). (3.29)

Lastly, with g = %, (3.28) and (3.29) are the upwinding flux equations for w and g—z
in one dimension. It should be further noted that both central flux equations, (3.21)
and (3.22), are included in (3.28) and (3.29). The portion of (3.28) and (3.29) that
include the variable c is considered the upwinding portion and is used separately

for the upwind flux energy analysis in Chapter 5.

3.6 Omne-Dimensional Discontinuous Galerkin Results
After laying the groundwork, we now apply these concepts to an actual problem
in one dimension using an upwind flux. We use the exact solution

p(x,t) = sin(nmx)sin(nmt), (3.30)
Ipp

— = w = nmsin(nmnx) cos(nmt), (3.31)

ot

on the domain Q) = [-1, +1] with periodic boundary conditions where 1 is an integer.
To build the initial condition, (3.30) and (3.31) are evaluated at t = 0 across a one-

dimensional grid of LGL points where x € [-1,+1]. These initial conditions are used

27

within (3.19) and (3.20) and evaluated through a Runge-Kutta five-stage fourth-
order (RK54) accurate iterative method [11]. Runge-Kutta methods are numerical
methods that approximate a system of ordinary differential equations. With the
RK54 method, (3.19) and (3.20) are evaluated through five stages per time-step
along the grid of LGL points. All of these evaluations are combined to produce a
fourth order accurate or higher approximation [8]. The following section discusses
the results of applying a DG method for the above one-dimensional problem. The

DG implementation can be found in Appendix B.

The implementation is tested using various polynomial orders and numbers of
equally spaced elements within the domain listed in Table 3.1. Once again, the

Table 3.1: Discontinuous Galerkin Tested Information

Polynomial Orders (N) | Number of Elements (Ne)
N =4,6,8 Ne=2,4,8,16
N =16 Ne=2,4,8

DG algorithm uses inexact integration for computational speed to ensure an easily
invertible diagonal mass matrix. Figure 3.4 shows the log of the error vs. log of the
number of elements for N = 4,6,8 calculated using the global L? error norms. As
expected for both w and p, Figure 3.4 displays increasing convergence rates as the
polynomial order increases. Increasing the order of the local approximation gives
the fastest convergence rates, as apposed to increasing the number of elements,
due to the fact that the global error is dependent on the polynomial order [1] as
depicted by

| &l < Chi. (3.32)

In (3.32), Cis a constant that is not dependent on the element size h but does depend
on the final time, ¢, of the solution. In this case, N is proportional to g in (3.32). As

the polynomial order (N) increases, the convergence rates increase.

Table 3.2 displays the convergence rates for the tested information from Table 3.1
for w and p. As you can see, as the polynomial order increases, the convergence

rates increase. Furthermore, Table 3.2 depicts the convergence rates being near or

28

Convergence Plot for w Convergence Plot for p

5 10 15 5 10 15
Ne - Number of Elements Ne - Number of Elements

Figure 3.4: Convergence Rates For N = 4,6,8 at Ne =2,4,8,16

better than its associated polynomial order, where the convergence rate for w is of

order N and the convergence rate for p is of order N +2.

Most DG methods are expected to be order N, N + %, or N+1 [1]. However, the
results yielded N and N +2 when using the same space of functions for w and p.
In Appeld and Hagstrom’s paper [2] they proved that when p is an N +1 order
polynomial and w is an N order polynomial you get optimal convergence of N +1
for this method [2]. In Table 3.2 and 3.3, these convergence rates are an observation;
a proof would require further analysis.

29

Table 3.2: Convergence Rates for N =4,6,8

Convergence Rates
N/Ne [Ne=2to4|Ne=4to8 | Ne=8to16
N =4 (w) 3.2286 4.1370 4.1317
N=4(p) 3.2103 6.3134 6.8160
N =6 (w) 5.8699 6.0861 6.0456
N=6(p) 7.3975 8.9715 7.9343
N =8 (w) 7.7170 8.0165 8.0291
N=8(p) 8.9915 10.1413 9.8260

Table 3.3: Convergence Rate for N = 16

Convergence Rates
N/Ne |Ne=2to4|[Ne=4to8
N=16(w) | 140437 | 156555
N =16 (p) 16.5784 17.5193

When testing higher order polynomials, we can increase the spatial error for the
given function and decrease the time-step in order to ensure that we can neglect any
time-stepping errors during testing [1]. Doing this allowed accurate convergence
rate measurements when testing 16" order polynomials. Figure 3.5 and Table 3.3
display how even higher order polynomials can be used to approximate the solution
with a much higher convergence rate. However, using higher order polynomials
comes with a computational cost with respect to time. Higher orders are much

more accurate, as seen in Figure 3.5, but the computational time increases.

30

Convergence Plot forw Convergence Plot for p

—%—N=16 —*%—N=16
0
107 F
1072 F .
10t
10 2 10-4 L 4
103k
2 o
N N 10'6 L i
10k -
105k
10° .
100
7
107 F
100t]
10_8' L PR TR I TR S T T T L PR TR RS S ISR
2 4 6 8 2 4 6 8
Ne - Number of Elements Ne - Number of Elements

Figure 3.5: Convergence Rates For N =16 at Ne = 2,4,8

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

CHAPTER 4:
Two-Dimensional Discontinuous Galerkin

Moving into two dimensions is obviously more challenging than one dimension.
The first portion of Chapter 4 focuses on an example two-dimensional grid with
quadrilaterals and explains the formulation of the metric terms needed for dis-
cretization. Section 4.2 is the discretization of (3.4), (3.6), and (3.12) in two dimen-
sions. As discussed in Chapter 2, working with integrals and mapping the physical
domain into a reference domain requires a change of variables. In two dimensions,
this change of variables produces a set of Jacobian determinants as well as surface
Jacobians on each element. Lastly, we apply these concepts to a two-dimensional
problem on a washer domain with curved elements.

41 Two-Dimensional Grid

Instead of a one-dimensional grid, which is just a line of elements in Chapter 3,
moving into two dimensions requires a two-dimensional grid of elements. Building
the grid requires a change of variables, from the x and y spatial coordinates to the

& and 1 reference coordinates [9]. Figure 4.1 is an example of a mapping for

3 3
7 8 9
4 2 = 4fs 2 62
12 3
1 1

L -

Figure 4.1: Example Mapping of a Quadrilateral Element in Two Dimensions with Degrees of
Freedom for N = 2.

a quadrilateral element in two dimensions. When using quadrilaterals for two
dimensions, we have (N + 1)2 LGL points in both the 17 and & directions, as depicted

33

by the red X symbols in Figure 4.1. The numbered order of the LGL points in
Figure 4.1 is important for the storage of data. For example, in Section 4.2 the

solution is stored in column vectors

w1 P1

w2 p2
w = , p = Y

wM pm

where there are M = (N +1)?> LGL points or degrees of freedom.

For notational purposes, the matrix of Jacobian determinates is annotated by J and
the matrix of surface Jacobians is annotated by one of the four sides of the element,
such as S;; for side one of the element, as labeled in Figure 4.1. Though Figure 4.1
is an example of elements with straight boundaries, we develop the scheme for
general curvilinear quadrilateral elements.

41.1 Metric Terms
As discussed before, we need to conduct a change of variables from (x,y) to (&,7),

where

x=x(&1), y=y&n), (4.1)

and we assume the inverse mapping exists with

E=&xy), n=ny). (4.2)

Let us consider a single quadrilateral element, such as the one in Figure 4.1. The
following explanation for the metric terms is based on Professor FX. Giraldo’s
lecture notes [3]. Consider the differentials defined from (4.1) and (4.2). They are

_ox B ag oE
=2 d£+ d d ”d +a’7d

which can be written in the matrix form

— - 'a a T - -
dx| |55 5 |[d&

=loy 9 , (4.3)
dy| |22 Z||dn
|7 | [0& odn L7
- - raé aé- - -
sl |ox ay||dx (4.4)
anl ~ 120 2nl| gyl :
| T] | dx Jdy|L y

The Jacobian and the inverse Jacobian, along with their determinants, from (4.3)
and (4.4) are

ox ox
9 oxdy Jyox

J=[§‘f a},] det() = 22 == — ===, (4.5)
8% 8% d&dn dEadn
dE ag

_ o _ _ 9Edn InoE

J 1=[3x P },] =del(J)= 2= - == (4.6)

- ag dxdy dxdy

Focusing on (4.5), taking the inverse of the Jacobian, 7, yields

1 gy gx
D=7 % 2| 4.7)
e JE
which must equal J ~1in (4.6) and thus
xodyf_ 2| dn n
Jx dy & &

Equation (4.8) gives the metric relations

oc_ay on_ ok x on o 49)
ox dn’ “ox 9 Ty I’ oy 9& '

which arise after the chain rule is used to map from the physical domain to the

reference domain. Lastly, on each element, we store the Jacobian determinants

and metric terms (4.9) in diagonal matrices, where the storage order is as the LGL

gridpoint order in Figure 4.1.

35

4.2 Two-Dimensional Discretization

The beauty of moving into two dimensions with quadrilateral elements is that the
constructions of the mass and differentiation matrices are relatively simple. The
evaluation of the surface integral over each element requires the Kronecker product
of the one-dimensional mass matrix with itself. This allows us to integrate in both
the £ and 7 directions for each element and is annotated by M ® M, where M is just

the one-dimensional mass matrix. Additionally, the differentiation matrices are

Dg =I®D,
D, =D®lI,

where I is the identity matrix of size (N +1) X (N +1) and D is the one-dimensional

differentiation matrix.

4.2.1 First Two-Dimensional Discretization Equation
The discretization of (3.4) is very similar to the one-dimensional discretization
except for the addition of the Kronecker product

1T](M®M)il—;;—1T](M®M)w = 0. (4.10)

Since we are in two dimensions, 1 is a vector of ones of size (N +1)? and is needed

because in (3.4) we are integrating against the function 1(x) = 1 [10].

4.2.2 Second Two-Dimensional Discretization Equation

The discretization for (3.6) requires much more analysis than (3.4) because of the
gradients and surface terms. Due to this, we focus on the left-hand and right-hand
sides separately. Here we explicitly introduce the differential into the integral for
two dimensions, whereas in Section 3.4, this differential was implicit. Focusing on
the left-hand side, we see that

+1 +1
f (¢%_‘;) + czw-Vp)dA = ¢T](M®M)dd—(: +c? f f [Vy-Vp]Jdédn,
Q; -1 Ja

36

where Vi) and Vp are equal to the following after the change of variables:
d&, dE an, on.dp
o5y e 5 o
9, | Y |dn. dn.|dp
e []95 [l+<9y] o’

Therefore, Vi) - Vp yields eight separate terms:

9iop Inop||dEay dndy| [9Edp dnadplldsdy dndy
IxdE Idxdn||dxdE dxadn| [dydE dydn||dydé dyan

9EIp 9EIY JEdpIndy IndpdEdy IE dp Iy (411)

Vi-Vp =

_8x&58x8£+8x8£8x8n dxdndx dE Idx dndx dn
0EIpIEdY 9Edp Iy IndpIEIY 9L Ip In P

JyIEdy IE Iy IEdy an Jyandy IE | Jyandy In’

Focusing on the first term of the second equation in (4.11), we find

+1 1 +1 e+l
&\ Ip (9E) Iv 9&\ Ip ag X
L L (ax) o& (ax Era f f I5x)ae\Vax) 5g aedn (12)
where we have multiplied in J] “lto place a Jacobian determinate with both of the
metric terms. By substituting in the metric terms from (4.9) and discretizing, we

produce

+1 +1
[\ [seser (o] rovow(oo)
-1

L, IndEdn IE @19

p)
= TDT[—y “T(MeM —lD .

The same process is completed for each of the eight terms in (4.11) to find the final

discrete form for the left-hand side of (3.4) to be

R0 ®M)é—(: +cP' Tp, (4.14)

37

where

[Jy dy _ Iy
| T T 1
T_(Dé_an] (MeM)]Dg Dg[&n] (M®M)]D
[dy Ay
T -1 T -1
D, _(95 (M®M) Dé +D;, 85 (MQM) ==]

. . (4.15)
+DT —]‘1(M®M)—]D5—DT[I '(MeoM) =]

[Ox

-1
gl e mZ

Dg +DT

-1
M ®M 1D,
As you can see, the discretization for two dimensions is more tedious than one
dimension.

The right-hand side of (3.6) is much simpler than the left-hand side. As a reminder,
the right-hand side of (3.6) is

2 -(Vp)'ds.
Cfagjwn(vp) s

Since we are working with quadrilaterals, we integrate the four boundaries of
each element, labeled by JQ;. Figure 4.1 displays how the four boundaries of
each element are numerically labeled. We pull the information from each side
individually by using the following operators:

Li=e[®I, L, =1®e¢), Ly=¢},®I, Ly=I®e¢]. (4.16)

The four L, operators (4.16) isolate the correct information from each element
boundary. Additionally, the change of variables for the right-hand side produces a

set of surface Jacobians found in either the & or 1 directions by
on\2 (on)? ax\2 (9y)?
S]é’ =] (a) + (@) = (%) + (&) , =13, (4.17)

P 2
SRR

NS}

X

2 2
—) +(—) , (=24 (4.18)

~————
N
Il
—_—
NS
=

By calculating the outward unit normal, n, for the sides of the element and incor-
porating it in with the calculation of the numerical flux, the discretization of the

right-hand side is
YT [LIMS1f, + LIMS o f 1y + LIMS s f 5 + LiMS s f], (4.19)

where f, =n- (Vp)". As a reminder from Section 4.1, Si1, Si2, Sj3, and Sj4 are the
matrix of surface Jacobians for each side of an element, as labeled in Figure 4.1.
This same notation is used for all four sides of the flux term, fp, listed in (4.19).
The numerical flux for two dimensions is discussed in greater detail in Section 4.3.
Finally, we combine the two sides of (3.6) to form the final discretization for the

second variational equation to be
dw
J(MeM)—>+c*Tp = c* (LTMS;1f,, + LIMS of , + LIMS 3 f 5 + LyMS s f,,,) . (4.20)

As a reminder, 1 does not appear in (4.20) because it must hold for all 1, as

discussed in Section 3.3.1.

4.2.3 Third Two-Dimensional Discretization Equation
The discretization process of (3.12) is similar to the discretization of (3.6) in the
previous section. Starting with the left-hand side,

ap)
VUV|=—-w]dA,
L, v

we have eight terms from the product of the gradients

dp & d (dp AEIY JE d (dp on oy
V‘W(_") axag(at)8x8£+8x&5(8t “’)axaq
L9 (dp_ \oEdp 9Ed (p_ \dnay

Tox on\ ot dx d& odxdn\dt dx on

L2809 (dp_ \IEH 99 (dp_ \Indy

07y dE\ ot dy o& 8]/ &\ ot dy dn

L9 (I No£dY &3 (dp_ \Indy

8y on\ ot dy 0& 8y an\ ot dyon’

(4.21)

39

Focusing on the first term of (4.21), we find the discrete form to be

FLEs.

TT -1 dy

Expanding the discretization for all eight terms in (4.21) yields the full discrete
form for the left-hand side of (3.12),

(9P TP T
P T(y w) YT -y T, (4.23)

where T is equal to Equation (4.15).

Let us focus on the right-hand side of (3.12),
f (Vi -n) (0" —w)ds, (4.24)
Qj

and discretize side one of a single element (see Figure 4.1). Conducting a change
of variables yields

+1
f Vi-n f,Side, (4.25)

1

where the f,, = (0" — w). For notational purposes, allow
43
Dx—la D¢ + E Dnl,

dE
Py= [3yD5 8yD”l

The discretization of (4.24) for side one becomes

¢T[(Lle)Tnx+(L1Dy)T”y]Msﬂf b’

40

where the flux, f ,, is from side one of an element as annotated in Figure 4.1. A

similar calculation for the remaining sides gives

P! (D;LlTnx + D;L{ny)MSjlfwl +y’ (Dngnx + DFyFLE"y)MSjwaz

(4.26)
+y" (DILYn, + DY LIn,)MSjsf, 5+ 9" (DIL{n,+ DyLin,)MS;sf ;.

Equation (4.26) is the discrete form for the right side of (3.12). Combining (4.26)
and (4.23) produces the final discrete approximation for the third variational equa-
tion to be

dp

T— —Tw =(DIL{n, + D] L{n,)MSj f,, +(DIL)n, + D} L] n,)MSf,,

dt (4.27)

Ty T Ty T Ty T Ty T
+(DXL3nx+DyL3ny)MS]-3fw3+(DxL4nx+DyL4ny)MS]-4fw4.

4.2.4 Combination of Two-Dimensional Discretization Equations
As in one dimension, we have three discrete equations and our goal is to get the
problem into the form of two equations and two vector unknowns. By combin-
ing (4.10) and (4.27), we find

d
(T+1)(MoM))=F = (T+ 1] (MeM))w + (DIL]n.+DILIn,)MS;1 £,
+(DILIn+ DILIn, \MSjof , + (DILYny + DILIn,) MS s f .5 (4.28)
+(DILne+ DL,)MSsf

w4’

where 1 is a matrix of ones since (4.10) produces a scalar. Additionally, for the sec-
ond equation, (4.20) can be re-arranged to isolate ‘fi—‘;’ for the final discrete equation
of

dw
JMeM)—- = (LTMS1f,, +LIMS o f o + LIMSjaf 5+ LiMSuf) — Tp) . (4.29)

Equations (4.28) and (4.29) are the two-dimensional ordinary differential equations
that we solve numerically using the RK54 scheme [11].

41

4.3 Two-Dimensional Numerical Flux

The numerical flux for two dimensions is conceptually similar to the numerical flux
for one dimension, except in two dimensions we have to account for more degrees
of freedom, boundaries, and the element normals. In Section 3.5, we accounted
for the discontinuity that existed between the two different approximations at the
boundary point. In this section, we account for the discontinuity that exists between
two different approximations at multiple boundary points along the surface of two
neighboring elements. Thus, the numerical flux in two dimensions is an extension
of the numerical flux from Section 3.5. Figure 4.2 is an example depiction of a

two-dimensional flux boundary for a quadrilateral element.

+ 1 +
+| - 3 - |+
r
<«——
2Xx4 X 2x4
S
)
+] - 1 - |+
+ 3 +

Figure 4.2: Example Two-Dimensional Flux Boundary on a Quadrilateral with N = 2.

In two dimensions, the element to be considered is the (—) side and the neighboring
element is the (+) side. This is the same for the (—) representing the element of

focus’s gridpoints and the (+) representing the neighboring elements gridpoints.

42

In referencing Figure 4.2, the center element requires a flux to be computed with
its neighbors at the boundary LGL points. Once again, Figure 4.2 is an example
for discussion purposes; the actual elements are curvilinear quadrilaterals and the
element normals at the LGL points are required in the numerical flux computation
of (n-Vp)*. The formulation of the form of the central flux and upwind flux can be

found in Section 3.5. The central flux equations for two dimensions are

W' = %(a)_ +w'), (4.30)
n(Vp) = 3 (- (Vp)= (Vp")), @31)

where (4.30) element normals are represented in (4.27). The element normals in two
dimensions are outward of each element. For example, n~ is the normal directed
away from the () boundary toward the neighboring (+) element and n* is directed
toward the element of focus (i.e., the center element in Figure 4.2). Typically, the
central flux is an average of both sides of an element boundary, but the reader may
notice that (4.31) has a minus instead of a plus sign. The reason for this is that

n+

= -n", and thus the minus sign actually produces an average. As a reminder,
the numerical flux is incorporated in the discretization equations by f, =n-(Vp)’
from Section 4.2.2 and f,, = (0" — w) from Section 4.2.3. Similar to one dimension,
the central flux is easy to understand and produces a stable algorithm, but it does

not take into account the physical propagation of information like the upwind flux.

The upwind flux equations for two dimensions are

1
W' = E(a)_ +a)+)—%(n+-(Vp+)+n"-(Vp")), (4.32)
. 1, _ _ 1 _
n (V) = 5 (1™ (V) = (Vp) + 5 (@ =), (4.33)
Equations (4.32) and (4.33) are formulated by the decoupling of the wave equation
into two one-way advection equations at the boundary points through the charac-
teristic variables. This is the same concept from Section 3.5, but in two dimensions,

there are three characteristic variables. However, the third characteristic variable

is associated with a zero eigenvalue and does not propagate information across

43

element boundaries. As depicted in Figure 4.2,] and r; are example characteristic

variables propagating information across one elemental boundary.

4.4 Two-Dimensional Discontinuous Galerkin Results
As a test problem we consider a washer domain with curved elements as shown
in Figure 4.3. Along the inner and outer radius of the washer, we impose the free

surface boundary conditions of p = 0. We use the exact solution of

p(x,y,t) =sin(nt - BO) Js(r(x,y)), (4.34)

d
a—lz = w(x,y,t) = ncos(nt —poO) Jg(r(x,v)), (4.35)

with the conversion equations

r(x,y) = AJ¥2+ 12,

O(x,y) = cos™! (

)
r(x,y)

for mapping between polar and Cartesian coordinates. Here, J4 is a Bessel function
of the first kind with parameter and 7 is an integer; we use f =4 and n =1. To
ensure (4.34) is equal to zero at the inner and out radius for all time, we enforced the
inner and outer radius of the washer grid to be the second and fourth roots of the
Bessel function. For interested readers, the DG implementation for two dimensions
can be found in Appendix C.

We initially tested the implementation on a square grid of quadrilateral elements
with periodic boundary conditions. After the successful implementation on a
square grid, we built and tested the algorithm on a washer grid with curved
elements using the exact solution of (4.34) and (4.35) evaluated at t = 0 as the initial

condition. To enforce the free surface boundary condition of p = 0, we used

W' =-w, (" (Vp)= (" (Vp"))

in the numerical flux routine for the points along the inner and outer radius of the

44

Figure 4.3: Example Two-Dimensional Washer Grid: Ne = 8

washer. Once again, a visual depiction of an example washer grid with Ne =8
semi-curved elements is seen in Figure 4.3. Initially, testing the entire washer grid
became too computationally expensive with the large number of elements. To
counter this problem and still maintain integrity of the results, we evaluated one
quarter of the washer by enforcing 7 periodic boundary conditions for the left and
right boundaries through the bessel function. By letting f be any multiple of four,
we enforced the 7 periodic conditions. For example, in referencing Figure 4.3, this
means boundaries 1 and 3 from elements 1 and 2 are equal.

Table 4.1 lists the different polynomial orders and elements tested using the initial
condition with (4.28) and (4.29) and evaluated through a RK54 iterative method.
Figure 4.4 shows the log of the error vs. log of the number of elements for N =
2, 4, 6, 8 calculated using the global L? error norms. As expected for both w
and p, Figure 4.4 displays increasing convergence rates as the polynomial order
increases. Once again, the higher the order of the local approximation, the faster

the convergence rates are due to the the global error being dependent on the

45

Table 4.1: Discontinuous Galerkin Tested Information

Polynomial Orders (N) | Number of Elements (Ne)
N=2,4,6,8 Ne =4,16, 64, 256
N =10, 12 Ne =4,16, 64

Convergence Plot for w Convergence Plot for p
L | T T T ™3 T T T T T
10° E

107 E

103 3

10° 3

10°

N=2 1010 N=2 B
10°F|—%—N=4 = —%—N=4
—*—N=6 —*—N=6
—%—N=28 —%—N=8
T | 1 PR R R | 1 o1l 1 PR R R B A |
10t 102 10t 102
Ne - Number of Elements Ne - Number of Elements

Figure 4.4: Convergence Rates For N =2, 4,6, 8

polynomial order [1] (as discussed in Chapter 3 with (3.32)).

Table 4.2 displays the convergence rates corresponding to Figure 4.4. As seen,
the convergence rates increase with increasing polynomial order. Using the same
space of functions for w and p, the two-dimensional results yielded convergence
rates being near its associated polynomial order, with @ being near N and p being

N+ % or N+1. Once again, most DG methods are expected to be of the order N,

46

Table 4.2: Convergence Rates for N = 2,4, 6, 8

Convergence Rates
N/Ne |Ne=4t016 | Ne=16to 64 | Ne = 64 to 256
N =2 (w) 1.9240 2.0570 21274
N=2(p) 1.9663 2.9243 2.8680
N=4(w)| 3.3438 42448 4.0822
N=4(p) 4.2739 5.1808 4.4615
N =6 (w) 5.2521 6.0193 6.0944
N =6 (p) 6.6670 6.7889 6.4519
N =8 (w) 6.9754 7.9190 8.0543
N =8 (p) 8.5157 8.7873 8.5069

N+ %, or N+1[1]. These results are different from the one-dimensional convergence
rates, where w is N and p is N +2. Understanding this difference requires further
analysis and is an area for future research.

Table 4.3: Convergence Rate for N =10, 12

Convergence Rates
N/Ne | Ne=4t016 | Ne=16to 64
N =10 (w) 8.7628 10.0287
N =10 (p) 10.2080 10.6994
N=12(w) | 10.6378 12.0772
N=12(p) 12.0461 11.8315

To use higher-order polynomials, we decreased the number of elements in order
to avoid reaching machine precision with the first datapoint. Figure 4.5 shows
the error and Table 4.3 gives the convergence rates for N = 10 and N = 12. The
convergence rates are still on the order of the polynomial, but the N = 12 case
seems to be reaching machine precision. Both Figure 4.5 and Table 4.3 display how
higher order polynomials can be used to approximate the solution with a much

higher convergence rate.

Using higher order polynomials, especially on complex geometries with curved
elements, comes with a computational cost with respect to time for approximating

the solution. Higher orders are more accurate, as seen in Figure 4.5, but the

47

Convergence Plot for w Convergence Plot for p

-5
3 10K
—%—N =10 1 F —%—N =10
—%—N=12|1 r —#—N =12
10°F 3 r
3 E 10° E
10° -
E E 107 E
-7
107" -
= E 10-8 =
=z 10°F E o ol
o E 3 N 10
- -
10° F E 1010
k
10'10 = - 101
101 E 1072
-13 |
102k 1 10 E 1
10t 10t
Ne - Number of Elements Ne - Number of Elements

Figure 4.5: Convergence Rates For N = 10, 12
computational time increases since the matrices to be inverted are larger with

higher polynomial orders and require a smaller time-step. In the code we use a
time-step of At = %

48

CHAPTER 5:
Energy Conservation

Proving stability of a method can be accomplished through an energy analysis.
The following energy analysis is similar to the method employed by Appeld and
Hagstrom [2]. By conducting the energy analysis on an element with neighboring
elements, we are able to find out if energy is dissipated or conserved throughout
the system. If energy is dissipated, then we know that all of the eigenvalues of
the system have a negative real part and thus the ODE is stable. If energy (E) is
conserved, then ‘fi—'f =0 and all the eigenvalues are purely imaginary. If Ey is the
energy on an element k, then the total energy is

E= ZEk, (5.1)

and we want to show

dE dE

—=Y —£<o0 (5.2)
in order to prove that energy is dissipated throughout the system as time progresses.

5.1 Basic Theory of Energy Conservation
Let us look at the continuous energy equation on the domain x € [4,b] for one

dimension:
b 2
1 1 (dp
E= — w0+ — =] dx, .
j;z/\a) +2p(8x) x 5.3)
with pr = w, wt = cszx, and ¢ = %. We assume c, A, and p are constants on the

domain. As a reminder, for clarification purposes, % = p; for a short notation form
and this follows through for the remaining terms in Section 5.1. The first portion

of (5.3) is the kinetic energy and the second portion is the potential energy for the

49

system. By taking the time derivative of (5.3)

1

b
1
E = f Jra papds, (5.4

we can now begin to manipulate (5.4) to show (5.2). Specifically, we want to
manipulate (5.4) in order to select our boundary conditions to ensure E; < 0. Let us
substitute w; = cszx and w = p; into (5.4)

b

1 1

Etzf XC2Pxth+—thdex- (5.5)
a %

With ¢? = %, it follows that (5.5) becomes

1 b
Ei=— f PxxPt + PxtPxdx, (5.6)
P Ja

and by conducting integration by parts on the last portion of (5.6) we find the

following;:

1 b b
Et:EI f Paprdx +pxpr 5 — f pxxptdx]- (5.7)
a a

The two remaining integrals cancel and we have that

1 b 1
Ei=—px |g:_ x@ |p =px@ laf, (5-8)
L= PP p[P b —Px@ la]

where we can now choose the boundary conditions to ensure E; < 0. For example,
with periodic boundary conditions, it should be obvious that (5.8) equals zero when
a = b and energy is conserved.

5.2 Two-Dimensional Energy Analysis
Section 5.1 is a relatively simple example of the analysis of energy for the continu-
ous one-dimensional system. Moving into two dimensions requires more tedious

analysis and also depends on the conditions set within the system. For example,

50

when using an upwind flux, we want to show that energy is dissipated and when
using a central flux, we want to show that energy is conserved. Let us initially
investigate a general two-dimensional case before moving into the flux analysis.

The energy equation for two dimensions is

f —w? +— px+py) (5.9)

where

% _9Edp , Inop
dx 0xdE dxan’

and

o\ _9dp (¢ 9P+9P359’79P 3P9ﬂ359P+9P 877 ap
dé dEdxdxdn IndxdxdE dn\d

ox] ~ 0&\ox x) o’

o\ o\
Moreover, (%) is formulated through the same method as ((9_5) , except with
respect to y. The change of variables of (5.9) yields

Ek—f”f“ () () |2

858n+8é8n <9p &p ﬁ@_'_a_g@ ap (5.10)
o'?é dxdx dydy|an 87) oxdx dydy|d& '
2
(%) (2
Ton [(&X) +(9y)]%]déd
and the discretization of (5.10) is
wT LT

Er=— 2/\ JMM)w + pp Tp, (5.11)

51

where T is the same simplifying variable used in Equation (4.14) from Section 4.2.2.

Taking the time derivative of (5.11) we have

dEk dw 1

1 dp T 1 7..(dp
which can be simplified to

dBe _ 1 7

dp
=@](M®M)()+—p T(—). (5.12)

Upon inspection of (5.12), we can substitute (4.27) and (4.29) in for [(M ®M) (‘fi—‘f)
and T(Z—f) from Chapter 4 to produce

dEx _ & rr(yT T T T
— = 70" |(LIMS}1 £y + LMS o f 1o + LiMS s f 5 + LiMS s f) = Tp |
1
+ EpT |Tw +(DIL{n, + DJL{n,)MS ;1 £, + (DILYny + D)LY,)MS o f ,(5-13)
+(DILne+DyLn,)MSjsf 5+ (DiLine + DyLin,)MSjsf ., |.
For notational purposes, let
T T T T
F,=(L{MSjif,, +LIMSpf,, +LIMS 3,5+ LiMSf ;)
F,=(DIL{n,+D}L{n,)MS;f,, +(DIL)n,+ DyLIn,)MSpf
+(DILY e+ DILIny \MS 3, 5+ (DIL iy + DI L1y)MS s f .

Therefore, Equation (5.13), with the substitution of % = %, becomes

R (F,—Tp)+ %pT(Ta) +F,), (5.14)

52

and since w’ Tp = p" Tw, (5.14) is further simplified to

T E(a) F,+p Fw). (5.15)

As you can see, (5.15) is dependent on the flux and boundary information from

each element, as included in F, and F,,. Knowing that
w! = LT
(ng - (Vpg))T =pT (D;Lgnx + D;Lgny) ,
for£=1,2,3,4, (5.15) becomes

dE; _

T

+ ("1 (V04)) M8 fo+ (2 (Vo)) MSpfo (516)
+ (n3 . (Vp3))TMS]'3fw3 + <n4 . (Vp4))TMS]'4fw4] .

Recall that f, =n-(Vp)" and f,, = (0" —w) from Section 4.2.2 and Section 4.2.3, thus
we can consolidate the boundary information for each side of an element

% = % [(anTMSjl (n1 : (VP1>)* + (n1 (Vp1>)TMS]1 (" a)l))

+(w§MSj2(nz-(Vp2)) +(n2 (2)) MSp (o wz))
+(w§M5f3("3'(VP3)) (- (Vps)) MSj @ “’3))
+ (- (Vp)

+(a)ZMSj4(n4‘(VP4)) +t{ns (Vp 4) MSja (a” a)4))]

(5.17)

Equation (5.17) is in the final form that we use to conduct the stability analysis.
Summing (5.17) for all elements, we can analyze the energy for the whole domain.
In what follows, we prove stability with the boundary conditions imposed from
Chapter 4 for the central flux and the upwind flux.

53

5.2.1 Central Flux Analysis

In order to simplify the analysis, we focus on a single side of an element with its
adjacent neighboring element. This concept is depicted in Figure 3.2 in Chapter 3.
For notation purposes, the (-) side is the element of focus and the (+) side is the
neighboring element. Additionally, @™ represents the solution at the degrees of
freedom on the associated side of the quadrilateral element as depicted in Figure 4.2.
This same notation applies for (5.19) and (5.20). The equations for the central flux

for a generic side without boundary conditions are

W' = %(w‘ +w"), (5.18)
W (V1) = 3 o (V) = (V)] 5.19)
W (V) = 5 - (V) = (Tp)]. (5.20)

Since we are working with one side of a quadrilateral element, we add together
the terms from one edge of the element with the terms from the neighbor’s corre-
sponding edge

dE:
—£ =[(@")" MS;(n* - (Vp))+ (" - (Vp*)) MS;(w")]

dt (5.21)
+[(@™)" MS;(n™ - (Vp)") + (- (Vp7)) MSj(w" - 7).
Substituting in (5.18), (5.19), and (5.20) for the flux portions in (5.21) yields
dEl_f_'- _1 T + + + +\\T + + +WT -
k@) Mt (V) — (" (Tp)) M+ (" (V) MS
(5.22)

\T T - - - T -

— (™) MS;(n"-(Vp*)) + (@) MS;(n"-(Vp)) = (n"-(Vp")) MS;w

- T T - _
+(n - (Vp7) MSjw* - (w*)' MS;(n™-(Vp7))|.
d +

Inspecting (5.22), all of the terms cancel out to show % =0 for one element
boundary. This can be expanded to all four boundaries of the quadrilateral. Thus,
energy is conserved and the ODE is stable when using the central flux.

54

5.2.2 Upwind Flux Analysis

As discussed at the end of Section 3.5, the upwind flux consists of the central flux
plus an upwinding portion. This is evident in (3.28) and (3.29). Therefore, since we
know that energy is conserved (i.e., % = 0) for the central flux portion, we only

investigate the upwinding portion. The equations for the upwinding section are

Wy = =5 [n* - (Vp*)+n™-(VpO)], (5.23)
(4 (Vp)), = 5o (@ — @), 5.24)
(- (Vp)), = 5o (@ — @), 5.25)

which is substituted into the elemental boundary equation (5.26) for the upwinding
portion,

(di) =[(@") MS;(n" - (Vp)"), + (" - (Vp*)) MS;w}|

. J ” o (5.26)
+[(@7) MS; (1 (Vp)"), + (™ - (Vp7)) MS;w}].

The substitution of (5.23), (5.24), and (5.25) into (5.26) yields

(dE;

7) = [@) MS (@™~) + (@) MSj (@ - a)]

o (T MS b (V)£ (7] 627)
+ (- (Vp)) MS;[n* - (Vp*) +n” - (Vp)]].

Factoring out a negative from the first portion of (5.27) makes (w™ — w™) become
(w™ —w™). Therefore, (5.27) can be re-written to

e)

— [0 () + - (Vp) M - (V) - (V)

(5.28)

55

Inspection of (5.28) displays two terms:

[(afr - w_)TMSj (w" - a)_)] ,
[- (Vp)+ 07 (Vp)) MS; (" - (Vp*)+ - (Vp)]

that are both positive definite. MS; in both sections is always positive; therefore, re-
gardless if (w* —w™) or (n* - (Vp™)+n~ - (Vp~)) produce negative or positive values,
the square of each is always be positive. Furthermore, with the negative in front

of both sections of (5.28), (f—t’f) < 0. The combination of (%) with df—t’f from the
central flux section (Section 5.2.u1) yields a negative value per face. The summation
of all the elements in the domain shows Equation (5.2) to be true. Therefore, this
method is stable for both the central flux and upwind flux on complex geometries

with curved elements.

5.2.3 Boundary Condition Analysis
In Chapter 4, we tested the method on a washer mesh with curved elements and
the boundary conditions of p = 0 on the inner and outer radius of the washer. In
order to implement the boundary conditions, the following constraints were set at
the inner and outer boundaries of the washer

W' =—w, (- (Vp") =~ (- (VpO), (5.29)

Additionally, we are only concerned with the (—) portion of (5.21) for the central
flux and the (—) portion of (5.26) for the upwind flux since there are no neighboring
elements ((+) portions) at the inner and outer radius of the washer.

Boundary Conditions with Central Flux
Once again, substituting in the central flux Equations (5.18) and (5.19) for the (-)
portion of (5.21) yields

dE
— = @) MS; (5 [(V) =t (Vp)]+ 6 (T M (5 (@7 -),

56

which becomes

E¢ T Lo, - - T 1 -
— = (@) M) (520 (V)] + - (TP) M (5 (207) (530
after the substitution of the boundary conditions listed in (5.29). Simplifying (5.30)

produces

dEk T - - - T -
— = (@) M (V) — (- (Vp) MSj (@) =0, (531)
and energy is conserved with the boundary conditions of p = 0 using a central flux.

Boundary Conditions with Upwind Flux

For the upwind flux boundary condition analysis, we use the same process as
above, except we use (5.23) and (5.25) for substitution into the (—) portion of (5.26).
This yields

(f_f) = (") MS; (% (w* — w—)) + (- (Vp) MS; (—% [(Vp*)+n~- (Vp‘)])

which becomes
(d%) = (™) MS; (% (—2w-)) +(n-(Vp) MS; (—% [-n~-(Vp7)+n~- (Vp‘)])

and is simplified to

(dE;

7) = —% (@) MS;w] <0. (5.32)

Once again, the combination of (5.31) and (5.32) produces a negative result for the

upwind flux boundary condition analysis.

The global energy dissipation rate is the sum of the energy dissipation rates at all of
the faces. Therefore, for both the central and upwind fluxes, the method discussed
in Chapter 4 is stable.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

CHAPTER 6:
Conclusion

The complexities of solving PDEs through Finite Difference Methods, Finite Volume
Methods, and Finite Element Methods is and will continue to be an area of ongoing
research. In this paper, we explored a new Discontinuous Galerkin method for
approximating a second order wave equation with curved elements in complex
geometries. The beginning two chapters discuss the tools needed for constructing
the DG method, while Chapter 3 and Chapter 4 tested the method in one and two
dimensions. Chapter 5 proved energy stability of the method through an energy

analysis.

In Chapter 3, convergence rates on a one-dimensional grid for both low and high
polynomial orders yielded rates near the associated polynomial order. The results
yielded convergence rates with w being on the order of N and p being on the order
of N +2, which is higher than most DG methods that yield results on the order of
N, N+ %, and N +1. Additionally, using higher polynomial orders required fewer

elements for a given error level.

In two dimensions, we tested the problem on a washer grid with curved elements.
In this case, the inner and outer radius had the free surface boundary condition
of p = 0 implemented through the numerical flux routine. The two-dimensional
results yielded convergence rates different than the one-dimensional method with
@ and p being near its associated polynomial order N or N + 3. Similar to the one-
dimensional results, testing high polynomial orders achieved machine precision at

a faster rate with less elements.

Chapter 5 explored the energy dissipation of the method, with and without the
imposed boundary conditions of p = 0, for the central flux and upwind flux. In all
cases, the method either conserved energy (ili—'f = 0) or dissipated energy (‘;—}f <0).
Therefore, the eigenvalues of the system have a negative real part proving that the
ODE is stable and the method is viable.

59

6.1

Future Work

Future research into this Discontinuous Galerkin method can be conducted on a

variety of topics. These topics include, but are not limited to, the following;:

Accuracy: As discussed in Chapter 3 and Chapter 4, the convergence rates
listed are observations; proving these results could lead to further insight and
improvement.

Efficiency: Is it possible to template the curvilinear elements so that the mass
matrix is the same for all elements by modifying the approximation space for
each element? The benefit of doing this is the ability to store one mass matrix
for all elements [12, 13].

Coupling: Development of the numerical coupling procedures for elastic—
acoustic interfaces within this second order form [14].

Form: Relationship between this second order formulation and the standard
tirst order formulation of the acoustic wave equation.

Extension: Consider this method for other equations, such as the Einstein
equations governing black hole dynamics where there are 10 equations in the

second order form versus 50 equations in the first order form [15].

60

[

N
a1

APPENDIX A:
Interpolation and Integration

The following are the main MATLAB codes for Interpolation and Integration from
Chapter 2.

A.1 Interpolation

%This is the main driver for Interpolation.
%Written by Benjamin Davis

% Department of Applied Mathematics

Yo Naval Postgraduate School

% Monterey, CA 93943-5216

%

%Synopsis: Conducting Interpolation using LGL points.

R e e %

%Interpolate a known function f(x) using legendre-gauss-labatto points.
clear

%Input Nth order interpolation (N) and number of evaluation points (k)

3N = 40;

k = 50;
%Initialization

errLlnum = zeros(N,1);

7lerrL1den = zeros(N,1);

errL1 = zeros(N,1);
errL2num = zeros(N,1);
errL2den = zeros(N,1);
errL2 = zeros(N,1);
errinfabsn = zeros(k,1);

sl errinfabsd = zeros(k,1);

errinf = zeros(N,1);
for n = 1:N

%Setting up Grids
x = legendre_gauss_lobatto(n+1);

61

31

33

37

41

43

45

49

5

53

61

63

65

end
% %6
Y%

c =

55 0/0

z = linspace(-1,1,50);

%Set up data for Lagrange Li(Xk)
f = exp(-4+x."2);

%Constuct Lagrange

[L,dL] = lagrange_basis(x,z);
%Evaluation

Pn=f « L;

%Error Analysis

fex = exp(-4xz.72);

for i = 1:k
errLlnum (n) = abs(Pn(i)-fex(i)) + errLlnum(n);
errLlden(n) = abs(fex(i)) + errLlden(n);
errL2num (n) = (Pn(i)-fex(i))”2 + errL2num(n);
errL2den(n) = (fex(i))”2 + errL2den(n);

errinfabsn (i) = abs(Pn(i)-fex(i));
errinfabsd (i) = abs(fex(i));

end
errL1(n) = errLlnum(n)/errLlden(n);
errL2(n) = sqrt(errL2num(n)/errL2den(n));

errinf(n) = max(errinfabsn)/max(errinfabsd);

/S IS/S/S SISV SIS ISIS/SIS SIS S SISIS S ISIS SIS SIS/ ISISISISISIS/S SIS /SIS ISISISISISISISISIS/SISIS/S)o
1 2 3 4 5 6 7 8
[1 00000000010, 000,000,000, 1100;...
000000000000, O0O0O0,O0O0GO0,O00O0O0;, 050.30.2];
9 10 11 12 13 14 15 16

Yo VSISV ISISISISISISISISISVSISIS SIS IS ISISISISISISISISISISISISISISISIS/SISISISISISISISISIS/SISISISISISIS/S o

%plot Pn vs. Actual Function

hold on

plot(x,f, " '="')

title ('Lagendre Gauss Lobatto Approximation"')
xlabel ('x")

ylabel ("f(x)")

axis([-1 1 -0.1 1])

legend('N=2"'", N=4','N=8', N=16"', 'Exact')

%Plot Error Norms

figure

62

69

71

W

11

17

21

23

25

27

N = 1:40;

semilogy (N, errL1 ,N,errL2 ,N, errinf)

title ('Legendre Gauss Lobatto Interpolation Error')
xlabel ('N")

ylabel ('Error Norm')

legend ('L1 Norm', 'L2 Norm ', 'Inf Norm ')

A.2 Integration

%This is the main driver for Integration.
%Written by Benjamin Davis

% Department of Applied Mathematics

Yo Naval Postgraduate School

% Monterey , CA 93943-5216

%

%Synopsis: Conducting Integration using LGL points.

R e T T %

%Integration: Using the interpolation functions, sampling the
%basis functions at LGL and LG integration points to perform the Gauss
%quadrature of the given equation from the project set.

clear

%Initialization
N = 19;

for n = 1:N
%Quadratrue points and weights
[x,w] = legendre_gauss_lobatto (n+1);
%Given Equation for evaluation
f = exp(-4+x."2);
%Constuct Lagrange matrix and differentiation matrix
[L,dL] = lagrange_basis(x,x);
%Evaluation
Pn = (f«L)x w';

%Evaluation of Error

63

N

31| end

37

exact = (sqrt(pi)/2)=erf(2);
errL1(n) = abs(Pn - exact)/abs(exact);
errL2(n) = sqrt((Pn - exact)”"2/(exact)”"2);

%Plot Error

N=1:19;

semilogy (N, errL2)

title ('Legendre Gauss Lobatto Integration Error')
xlabel ('N")

ylabel ('Error ")

legend ('L2 Norm ")

64

N

S

1€

N

26

28

3

APPENDIX B:
One-Dimensional Discontinuous Galerkin

The following are the main MATLAB codes for the one-dimensional problem from
Chapter 3.

%This is the Driver function using a Discontinuous Galerkin method for
Y%approximating a 2nd Order Acoustic Wave equation in one dimension
%with an Upwind Flux.

%

%Written by Benjamin Davis Created: October 2014
Yo Department of Applied Mathematics

% Naval Postgraduate School

Yo Monterey, CA 93943-5216

%

%Synopsis: Discontinuous Galerkin Method for wave equation in second
%order form using inexact integration an Upwind flux. The outputs
%are currently four plots: Convergence rates for w and P and plots
%o0f the numerical and exact solutions.

clear

%Initial Inputs

N = 4; %Polynomial Order
n = 3;

dtscale = 1/4;

c = 1;

z = 1;

t_final = 0.58;

ngl = N+1;

for Ne = 2.7(1:4)
fprintf ('Number of Elements %4d with polynomial order %2d\n',Ne,N)
Np = Nex(ngl);
%Interpolation and Integration Points
[psx,w] = legendre_gauss_lobatto(ngl);

65

32

34

38

40

44

46

48

54

56

60

64

66

%Constuct Lagrange matrix and differentiation matrix
[L,dL] = lagrange_basis (psx,psx);

%Construct Mass and Differentiation Matrices

IM,D] = mass_diffID(L,dL,w);

%Construct Global Mass and Differentiation Matrices

[coord,intma] = create_grid (ngl,Ne, psx);
dx = coord (N+1)-coord (1) ;

M= M.xdx/2;

D = M\D;

Dh = D';

grad2 = Dh:«M:D;
one = ones(ngl,ngl);
onesM = one=M;

Ml = grad2 + onesM;

el

en

sparse(1,1,1,ngl,1);

sparse(ngl,1,1,ngl,1);

%Building the Initial Condition
for e = 1:Ne
for i = 1:N+1
I

X

intma(e,i);

coord(I);

q0(e,i,1) = nspissin(nspixx); %dp/dt=w at t=0
q0(e,i,2) = 0; %P at t=0

end
end
ql = q0(:,:,:);
%Iime Step Calculation
dt dtscale «(1/Ne) /(N"2);
Nt = round(t_final/dt);
dt = t_final /Nt;
%Periodic Boundary Conditions

[sidep] = sideper(Ne);
%Facemap
[fmp] = facemap(Ne) ;
S SV S8 S SV S S S SV S S S S SV S S S SV S S S S SV S S S SV S S S S SV S S S S SV SIS S SV S SIS S SV SV SIS SV S SIS IS SV SISIS ISV SV SIS IS o

66

70 | YOS SIS IS SIS IS S VS IS IS VS IS IS VS IS ISV S VS I SV S VS IS VS VS IS VS VS IS SV S IS VSV S I S SV S Y S SV S Y S SV SV SISV SV S ISV S VS ISV SIS ISV SIS ISV SYS ISV SIS ISV S/ S o
%Compute RK Time-Integration Coefficients

72 kstages = 4; %=1 is RK1; =2 is RK2; = 3 is RK3; and = 4 is RK4
if (kstages < 4)

74 [a0,al,beta] = compute_ti_coefficients (kstages);

76 for k = 1:Nt

for a = 1:kstages

78 [wf,dpf] = upwindflux(Ne,ql,D,ngl,sidep);

[R] = RHSDG(en,e0,Dh,D,M, ql,Ne, M1, wf,fmp,dpf,c);
80

gn=al(a)+q0 + al(a)xql + dt«beta(a)sR;

82 ql = gqm;
end

84 q0 = gm;

end
86 elseif (kstages == 4)
88 a=1[0,1/2,1/2,1];

b=1[1/6,1/3,1/3,1/6];
90 R = 0;

for k = 1:Nt
92 gn = q0;

for s = 1:4
94 qs = qO0+dtxa(s)=+R;
9% [wf,dpf] = upwindflux(Ne,qs,D,ngl,sidep);
[R] = RHSDG(en,e0,Dh,D,M, qs,Ne, M1, wf, fmp, dpf,c);
98
gn = gm + dt+b(s)sR;
100 end
q0 = gm;
102 end
end

104 | YS/S VSISV SISV SIS ISV SIS IS VSISV SISV SIS ISV SIS IS SISV SIS IS VSISV SIS IS SIS SIS ISV SIS/ SIS IS SISV SISIS VSIS SIS ISV SISISIS IS SISISISIS/SISIS/S o

SSISISVSIS SIS/ SIS SIS SIS ISIS S SIS/SIS SIS SIS SIS SIS SIS S SISIS S SIS SIS SIS SIS SIS SIS SIS SISISISISISIS/SISISIS/SISISIS/S)S o

106 %Plotting Purposes
for e = 1:Ne
108 for i = 1:N+1

67

I

110 X

intma(e,i);
coord(I);

gex(e,i,l) = ns+pissin(nspizxx)=zcos(nxpixt_final);

112 gex(e,i,2) = sin(nspisx)s+sin(nzpixt_final);
end
114 end

%Plotting purposes

116 m=1;
for e = 1:Ne
118 for i = 1:N+1
w(m) = gm(e,i,1);
120 wexact(m) = gex(e,i,1);
122 p(m) = qm(e,i,2);
pexact(m) = gex(e,i,2);
124
I = intma(e,i);
126 xp(m) = coord(1l);
mem+1;
128 end
end

130 %Building the Error Plot Information

L2errw = 0;
132 L2errp = 0;
134 for elm = 1:Ne
pnts = (elm-1) +(N+1) + (1:(N+1));
136 dw = w(pnts)-wexact(pnts);
dp = p(pnts)-pexact(pnts);
138 L2errw = dwsMsdw'+ L2errw ;
L2errp = dpsMxdp'+L2errp;
140 end
142 L2err(1,z) = Np;
L2err(2,z) = sqrt(L2errw);
144 L2err(3,z) = sqrt(L2errp);
L2err(4,z) = Ne;
146 z = z+1;

end

68

148| % SIS ISV S SIS SIS VSISV SIS IS VSIS /SIS IS VS ISV SIS IS VSIS SIS ISV SIS IS VSIS SISV SIS ISV SIS SIS ISV SIS IS VSIS SISISISISISISISISIS) o

Yo 1 2 3 4 5 6 7 8
wlc =[1 00,01 0,000, 000,000, 001,00 0; 10 0;...
000000000000, O0O0O0,O0O0GO0O00O0®O0, 050.30.2];

152| % 9 10 11 12 13 14 15 16

Yo VSV ISV S I ISV S S IS VS VS S ISV S S I SV S S S VSV S S VS VSV S S SV S S I S VSV S S I S VSV S S ISV S VS I SISV S VS I SISV S VS I SIS VSIS SIS VSIS SV S o
VS/SISISISISISISISISISIN Convergence Plo t/s/s/s/s/SiSisIs/s/s/s/s/s/s/s/s/s/s/SISISISISISISo

figure (1)

15| subplot(1,2,1); %hold on

loglog (L2err(4,:) ,L2err(2,:),"'s-", color',c(N,:))

Ny

15

158 title ('Convergence Plot for w')
xlabel ('Ne - Number of Elements ")
160 ylabel ('L2 w')
axis tight
162 legend(N=4', N=6',N=8",N=16")

VS/S/S/SISISISISISISISIP Convergence P 1ot/SISISISIS/S/SISISISISISISISISISISISISISISISISISISlo
is| subplot(1,2,2); %hold on
loglog (L2err(4,:) ,L2err(3,:), 's-"', color',c(N,:))

166 title ('Convergence Plot for p')
xlabel ('Ne - Number of Elements ")
168 ylabel ('L2 p"')
axis tight
170 legend('N=4'", N=6', N=8',N=16")

Yo VSISISISISISISISISISISISISIPlot Numerical Solution P(x, t)%/S/s/S/S/S/S/s/S/slo
| figure (2)

plot(xp,p,xp,pexact, '+ ")

74| title ('Numerical Solution for p(x,t)")

xlabel ('x")

76| ylabel('t")

legend ('Numerical ', "Exact ")

178 Yo YSISVSISISISISISISISIS/SIPlot Numerical Solution w(x, t)%S/S/S/S/s/S/SIs/S/So
figure (3)

0| plot(xp,w,xp,wexact, '+ ")

title ('Numerical Solution for w(x,t)")

2| xlabel('x")

ylabel ('t")

181) legend ('Numerical ', 'Exact ")

15| rate_w = (log(L2err(2,1:end-1))-log(L2err(2,2:end))) ./

69

(log(L2err(1,2:end))-log(L2err(1,1:end-1)));

iss| rate_p = (log(L2err(3,1:end-1))-log(L2err(3,2:end))) ./
(log(L2err(1,2:end))-log(L2err(1,1:end-1)));

190
fprintf ('Convergence rate for w: ')
2| disp (rate_w)

| fprintf ('Convergence rate for p: ')
disp (rate_p)

%Function for the Right Hand Side of Discretized equations for
s|%0one dimension DG from Chapter 3.
%Written by Benjamin Davis Created: November 2014

5% Department of Applied Mathematics

Yo Naval Postgraduate School

7% Monterey , CA 93943-5216

D() """"""""""""""""""""""""""""""""""" 0/0

function [R] = RHSDG(en,e0,Dh,D,M, qn,Ne,Ml,wf,fmp,dpf,c)
for e = 1:Ne
1 R(e,:,2) = Mlxqn(e,:,1) ';

R(e,:,2) = R(e,:,2)"' + Dhx(enswf(fmp(2,e))-e0xwf(fmp(1,e)));
13 R(e,:,2) = R(e,:,2) "' - Dhx(ensen'sqn(e,:,1) '-e0+e0'xqn(e,:,1) ")
R(e,:,1) = -c"2+Dh:M:Dx+qn(e,:,2) ';
15 R(e,:,1) = R(e,:,1)" + c"2«(enxdpf(fmp(2,e))-e0+dpf(fmp(1,e)));
end
7 R1 = MI\R(:,:,2) ';
R1 = R1';

19 R(:,:,2) = R1;
R2 = M\R(:,:,1) ';
21 R2 = R2';
R(:,:,1) = R2;

23| end

70

w

o

11

17

21

23

25

w

~

o

%Function for the Center Flux for the one-dimensional DG problem from
%Chapter 3
%Written by Benjamin Davis Created: October 2014

Yo Department of Applied Mathematics

Yo Naval Postgraduate School

Yo Monterey, CA 93943-5216

R e e e T %

function [wf,dpf] = centerflux(Ne,qn,D,ngl, sidep)
for s = 1:Ne
Ls = sidep(1,s);

Rs = sidep(2,s);
qglw = gn(Ls,ngl,1);
gRw = gn(Rs,1,1);
dpL = D«qn(Ls,:,2) ';
dpL = dpL(ngl);

dpR = Dx+qn(Rs,:,2) ';
dpR = dpR(1);

wi(s,:) = (1/2)+(qLw + qRw);
dpf(s,:) = (1/2)+(dpL + dpR);
end
end

%Upwind Flux function for one dimension DG. Used in one dimension driver
%for 2nd Order Acoustic wave equation.
%Written by Benjamin Davis Created: October 2014

Yo Department of Applied Mathematics

Yo Naval Postgraduate School

Yo Monterey, CA 93943-5216

R e T T T %

function [wf,dpf] = upwindflux(Ne,qn,D,ngl, sidep)

71

19

21

N
@

N

e

10

c = 1;
for s = 1:Ne
Ls = sidep(1,s);
Rs = sidep(2,s);

qglw = gn(Ls,ngl,1);
gRw = gn(Rs,1,1);
dpL = D«qn(Ls,:,2) ';

dpL = dpL(ngl);
dpR = Dx+qn(Rs,:,2) ';
dpR = dpR(1);

wi(s,:) = (1/2) +(qlw + gqRw) + c¢/2x(dpR - dpL);
dpf(s,:) = (1/2)+(dpL + dpR) + 1/(2xc)+(qRw - qLw);

end
end
R e T T TP %
%Code given to Professor's F.X. Giraldo MA4245 Class July 2014
%Used by Ben Davis
%This code computes the Legendre-Gauss-Lobatto points and weights
%which are the roots of the Lobatto Polynomials.
%Written by F.X. Giraldo on 4/2000
Yo Department of Applied Mathematics
% Naval Postgraduate School
Yo Monterey, CA 93943-5216
R e e T T T %

function [xgl,wgl] = legendre_gauss_lobatto (P)
p=P-1;
ph=floor ((p+1)/2);

for i=1:ph
x=cos((2+i-1)xpi/(2xp+1));
for k=1:20
[LO,L0_1,L0_2]=legendre_poly(p,x);

72

20

24

26

32

34

36

38

40

&)

—_

%Get new Newton Iteration
dx=-(1-x72)+L0_1/(-2+x+L0_1 + (1-x72)%L0_2);
x=x+dx ;
if (abs(dx) < 1.0e-20)
break

end

end

xgl(p+2-i)=x;

wgl(p+2-i) =2/(p+(p+1)+L0"2);

end

30|%Check for Zero Root

if (p+1 ~= 2+ph)
x=0;
[LO,L0_1,L0_2]=legendre_poly(p,x);
xgl (ph+1)=x;
wgl(ph+1)=2/(p+(p+1)+L0"2);

end

%Find remainder of roots via symmetry

for i=1:ph
xgl(i)=-xgl(p+2-i);
wgl(i)=+wgl(p+2-i);

end

%Function for building the Lagrange Polynomials.
%Written by Benjamin Davis in MA4245 Created: July 2014 in MA4245

% Department of Applied Mathematics

% Naval Postgraduate School

% Monterey, CA 93943-5216

R e R E T T %

function [L,dL] = lagrange_basis(x,z)

%Nth order interpolation

n = length(x);

%Length of the equally spaced grid for k = 1:50
h = length(z);

73

W

15

21

23

25

27

29

31

33

N

=

=

%Initialize the Lagrange Matrix
L = ones(n,h);

dL = zeros(n,h);

%Computation for Lagrange Matrix

for k = 1:h
for i = 1:n
for j = 1:n
dl = 1;
if j ~=1i % If j does not equal i
%Equation for the Lagrange Polynomial
L(i k) = (z(k)-x(j))./(x(1)-x(j)) = L(i,k);
for 1 = 1:n
if (I ~=1) && (1 ~=j)
dl = dl«(z(k)-x(1))./(x(i)-x(1));
end
end
dL(i,k) = dL(i,k) + dl/(x(i)-x(j));
end
end
end
end
end
R e T T T %

%Code given by Professor F.X. Giraldo to MA4245 class.
%Used by Ben Davis
%This code computes the Legendre Polynomials and its 1st and 2nd

%derivatives

%Written by F.X. Giraldo on 4/2000

% Department of Applied Mathematics
% Naval Postgraduate School

% Monterey, CA 93943-5216

%

%This code was written by Professor Giraldo and given to his MA4245
%Galerkin Methods class in July 2014.

iu| function [LO,L0_1,L0_2] = legendre_poly(p,x)

16| L1=0;L1_1=0;L1_2=0;
L0=1;L0_1=0;L0_2=0;

for i=1:p

20 L2=L1;L2_1=L1_1;L2_2=L1_2;
L1=L0;L1_1=L0_1;L1_2=L0_2;

2 a=(2«i-1)/1i;

b=(i-1)/i;

24 LO=a+xxL1 - bxL2;

LO_1=a=(L1 + x+L1_1) - bx«L2_1;

26 L0_2=a=(2+L1_1 + x=«L1_2) - b«L2_2;
end

%Function for building the Mass and Differentiation matrices for
9%One-Dimension. Used in Thesis 1D Upwind code.
%Written by Benjamin Davis Created: July 2014

w

5| % Department of Applied Mathematics

Yo Naval Postgraduate School

71% Monterey, CA 93943-5216

R e T T T %

function [M,D] = mass_diff1D(L,dL,w)
n = length(L(:,1));
11|M = zeros(n,n);

D = zeros(n,n);

for i = 1:n

15 for j = 1l:in

M(i,j) = ((L(i,:).«L(j,:))»w(1,:)");
D(i,j) = ((L(i,:) «dL(j))ew(1,5));
end

19 end
end

75

N

'S

16

20

22

24

26

N

'S

%Code given to Professor's F.X. Giraldo's MA4245 class
%Used by Ben Davis

%This function computes the LGL grid and elements.
%Written by F.X. Giraldo on 10/2003

Yo Department of Applied Mathematics

% Naval Postgraduate School

% Monterey, CA 93943-5216

B T e %
function [coord,intma] = create_grid (ngl, nelem, xgl)

%Set some constants

xmin=-1;

xmax=+1;

dx=(xmax-xmin) /nelem ;
%Generate Grid Points
ip=1;
coord (1)=xmin;
for i=1:nelem
x0=xmin + (i-1)=xdx;
intma(i,1)=ip;
for j=2:ngl
ip=ip + 1;
coord (ip)=(xgl(j)+1)+dx/2 + x0;
intma (i, j)=ip;
end
end

% Function for implementing periodic boundary conditions for Thesis 1D
% Upwind code.
%Written by Benjamin Davis Created: November 2014

76

10

14

18

N

'S

10

16

% Department of Applied Mathematics
% Naval Postgraduate School
% Monterey, CA 93943-5216
R Yo
function [sidep] = sideper (Ne)
sidep = zeros(2,Ne);
for e = 1:Ne
sidep(l,e) = e-1;
sidep(2,e) = e;
if e==
sidep(1l,e) = Ne;
end
end
end
R %
%Facemaping periodic function for 1-Dimension and used in Thesis 1D
%Upwind code.
%Written by Benjamin Davis Created: November 2014
Yo Department of Applied Mathematics
Yo Naval Postgraduate School
Yo Monterey, CA 93943-5216
B T %
function [fmp] = facemap (Ne)
fmp = zeros(2,Ne);
for e = 1:Ne
fmp(1l,e) = e;
fmp(2,e) = e+1;
if e==Ne
fmp(2,e) = fmp(1,1);
end
end

end

77

THIS PAGE INTENTIONALLY LEFT BLANK

78

10

14

16

18

20

22

26

APPENDIX C:
Two-Dimensional Discontinuous Galerkin

The following are the main MATLAB codes for the two-dimensional problem from
Chapter 4.

%This is the main driver for approximating the 2D Acoustic Wave
%Equation with an upwind flux on a washer grid. The washer grid
%can be scaled to various sizes based off of user input.
%Written by Benjamin Davis and Asst. Professor Jeremy Kozdon

% Department of Applied Mathematics
Yo Naval Postgraduate School
% Monterey , CA 93943-5216

%Synopsis: Discontinuous Galerkin Method for wave equation in second
%order form using inexact integration and an upwind flux. The outputs
%are currently five plots: Convergence rates for w and P and plots of

%the numerical and exact solutions.

R T T e %
clear
N = 2;
n=1;
c = 1;

t_final = pi/2;
%Define beta to be zero and will run with no theta dependence.
beta = 4;

% skew_mesh = 0 rectangular mesh
% skew_mesh = 1 :: skew element (straight sided)
% skew_mesh = 2 :: skew element (curved elements)

skew_mesh = 2;

%Define anonymous functions for the solution
r_ex = @(x,y) sqrt(x"2 + y~"2);

theta = @(x,y) acos(x/r_ex(x,y));

@(r_ex) besselj(beta,r_ex);
@(x,y,t) sin(cxt-betastheta(x,y));

g_ex

f_ex

79

32

3

g

38

4

4

S

46

48

54

56

58

64

66

P_ex = @(x,y,t) f_ex(x,y,t)+g_ex(r_ex(x,y)); %p(x,y,t)
@(x,y,t) cxcos(cxt-betaxtheta(x,y))+g_ex(r_ex(x,y)); %dp/dt

%Select inner and outer radius of washer.

w_ex

%Found these values using fzero command on Bessel function.
rl = fzero(g_ex,6);

r2 = fzero(g_ex,14);

disp ([r1,r2]);

%Full Washer.
%rn is what 2+pi will be divided by to change the size of the mesh.
%For example, if you use 4, you will get pi/2 or 1/4 of the washer.

%Scaling the washer.
Y%rn = ceil ((2xpixr2)/(r2-11));

%For storing information, Don't Change
z=1;
for nel = 2.72(1:3)

nqg = N+1; %Number of integration/quadrature points

ngl = N+1; %Number of interpolation points in one direction
nelx = nel;

nely = nel;

%Interpolation and Integration Points

[psx,w] = legendre_gauss_lobatto (N+1);

%Create Grid

[coord ,intma,bsido ,iperiodic ,Np,Ne,nboun, nface] = create_grid_2d (
nelx ,nely ,N, psx, plot_grid ,skew_mesh) ;

fprintf ('Number of Elements %4d with polynomial order %2d\n',6Ne,N)

%Create Sides/Edge Information for DG

[iside ,jeside] = create_side (intma, bsido ,Np,Ne,nboun, nface,ngl);
[face ,imapl,imapr] = create_face (iside ,intma, nface,ngl);

s_face = face;

%Changing face code to enforce new BC.

[face] = faceBC(nface, face);

80

76

78

82

84

86

88

92

94

96

98

100

102

104

%WIill not be periodic with face from faceBC. If you want periodic,
Ycomment out faceBC function.

face = create_face_periodicity(iside ,face,coord, nface ,nboun);
%Building the washer.

[Rad] = radius(coord,rl,r2);

[theta] = thetapolar(coord,rn);

[coord] = newcoord(Rad, theta ,coord);

%Construct Lagrange Basis and Jacobian Matrix

[L,dL] = lagrange_basis (psx,psx);

[ksi_x ,ksi_y,eta_x,eta_y,x_ksi,x_eta,y_ksi,y_eta,jac] = metrics2(
coord ,intma,L,dL,Ne, ngl,nq);

%Building and Element to Element function.

%EtoEfunctBC incorporates boundary conditions.

EtoEBC = EtoEfunctBC (nface, face ,Ne);

%Constuct M, D, D_ksi, D_eta Matrices

[M,D] = mass_diff2D (L,dL,w);

M_1ID = M;

M = kron(MM) ;

D_eta
D_ksi

kron (D, eye(ngl));

kron(eye(ngl) ,D);

%Construct L1,L2,L3,L4
e0 = sparse(1,1,1,ngl,1);

en sparse(ngl,1,1,ngl,1);

L1 = kron(e0',eye(ngl));

L2 = kron(eye(ngl) ,en');
L3 = kron(en', eye(ngl));
L4 = kron(eye(ngl),e0"');

%Building Matrix Terms and new Jacobian for solving the RHS for
equation 5, 6 and 7.

[MAT, MAT _ksi,MAT eta,Je ,A,B,C,D,E,F,G,H] = MatrixTerms2D (Ne, D_ksi,
D_eta,y_eta,y_ksi,x_eta,x_ksi,jac M);

%Building Dx and Dy for RHS

[Dx,Dy] = DxDy(Ne, ksi_x ,ksi_y ,eta_x ,eta_y,D_ksi,D_eta);

%Building the surface jacobians for the faces

[Sj1,Sj2,5j3,Sj4] = SurfaceJac2D (Ne,L1,L2,L3,L4, x_ksi,x_eta,y_ksi,

81

106

108

110

112

114

116

118

122

124

126

130

132

134

138

140

y_eta);
%Compute the Normals per element
[nx_1,nx_2,nx_3,nx_4,ny_1,ny_2,ny_3,ny_4] = ElementNormals2D (Ne, L1,
L2,L3,L4,x_ksi,x_eta,y_ksi,y_eta,Sjl,5j2,5j3,5j4);
%Big Matrix of Ones
Ml = ones(nglsngl);
%Building Initial Condition
for e = 1:Ne
for i = l:ngl

for j = l:ngl
I = intma(e,i,j);
x = coord(I,1);
y = coord(I,2);
q0{1}(e,i,j) = w_ex(x,y,0); %dp/dt = w at t=0
q0{2}(e,i,j) = P_ex(x,y,0); %P(x,y,t) at t=0;
end
end
end
ql = q0;

Yo VSISV ISISVSISISISVSISISIS VSIS ISIS S ISISIS S ISIS VSIS SIS IS SIS IS S ISISIS S ISIS SIS ISISISISISIS S SISISISISISISISISISISISISISISIS o
Yo VS/S/SISISISISISISVSISISIS /SIS ISIS S SISIS S ISIS SIS ISIS SIS ISIS S SIS/ S SISIS SIS ISIS/SIS o

% Time Step Calculation

dt = (1/2) «((1/Ne) /(N"2));
Nt = round(t_final/dt);
dt = t_final/Nt;

Yo S SIS SISV SIS SISV S IS IS S IS VS IS VS S ISV S IS VS S ISV S SV S IS ISV S I SV S S ISV S I SV S S ISV S I SV S S ISV S SV S VS ISV SISV S VSISV S SIS VSISV SISV S /S o
Yo VSIS ISV ISV IS VS IS S IS IS VS IS VS IS VS IS VS IS VS IS S 1S S VS ISV S ISV S IS VS IS VS ISV S 1S VSIS I SIS I SV S ISV S IS VS IS VSIS VSIS SIS ISV IS IS IS VSIS VSISV S
% Beginning of the RK54 Time integrator
a=1] 0.0,

-567301805773.0/ 1357537059087.0,

-2404267990393.0/ 2016746695238.0,

-3550918686646.0/ 2091501179385.0,

-1275806237668.0/ 842570457699.0];

b = [1432997174477.0/ 9575080441755.0,
5161836677717.0/ 13612068292357.0,
1720146321549.0/ 2090206949498.0,
3134564353537.0/ 4481467310338.0,

82

144

146

148

156

160

162

164

166

168

170

2277821191437.0/ 14882151754819.0];

R{1} = 0;
R{2} = 0;

for k = 1:Nt
qm = q0;
for s = 1:5
1} = a(s)=R{1};
R{2} = a(s)=+R{2};

%Building all the flux information with Boundary Conditions

[fwl,fw2,fw3, fw4, fpl , fp2 ,fp3,fp4] = UpwindFlux2DFwFpBC (Ne,qm
, L1,L2,L3,L4,EtoEBC,Dx,Dy,nx_1,ny_1,nx_2,ny_2,nx_3,ny_3,nx_4,ny_4);

%Solving Right Hand Side

[R1] = RHSDG2Dn(Ne,MAT, Je ,M,M_1D,M1,qm,Dx,Dy,L1,L2,L3,L4,
nx_1,ny_1,nx_2,ny_2,nx_3,ny_3,nx_4,ny_4,5j1,5j2,5j3,Sj4 ,fwl, ftw2,{fw3,
fw4, fpl,fp2,fp3,fp4,c,MAT ksi, MAT eta) ;

R{1} = R1{1} + R{1};
R{2} = R1{2} + R{2};
gm{1} = qm{1} + dt«b(s)sR(1};
gm{2} = gm{2} + dtzb(s)=+R{2};
end
q0 = qm;

end

IS/ SISV SIS IS SISV S SISV SIS VSISV S SIS SIS VS VS ISV S SIS VSISV SIS IS VSIS SIS IS VS ISV SIS IS VSISV S SIS VSISV SIS ISV SISV SIS IS SIS/ SIS ISV SI SIS/ S Vo
IS/ SISV SISV SISV S SISV SIS VSIS IS SIS S SIS VS ISV S SIS VSISV SIS IS VSIS SIS IS VSISV SIS IS VSISV SIS IS VSIS SIS ISV SIS/ SIS IS SISISISISVSI SIS/ SV

%For plotting purposes

%Solving the exact solution at final time.
for e = 1:Ne
for i = 1l:ngl
for j = 1:ngl

I = intma(e,i,j);
x = coord(I,1);
y = coord(I,2);

gex{l}(e,i,j) = w_ex(x,y,t_final);
gex{2}(e,i,j) = P_ex(x,y,t_final);

83

178 end
end
180 end

%Plotting the exact solution vs. numerical solution.

182 m=1;
for e = 1:Ne
184 for i = 1:ngl
for j = 1:ngl

186

w(m) = qm{l}j(e,i,j);
188 wexact(m) = gex{1l}(e,i,j);
190 pm) = qn{2}(e,i,j);

pexact(m) = qgex{2}(e,i,j);
192

I = intma(e,i,j);
194 xp(m) = coord(I);

mem+1;
196 end

end

198 end

%Building the Error Plot Information
200 L2errw = 0;

L2errp = 0;
202

for elm = 1:Ne

204 pnts = (elm-1)+(N+1)"2 + (1:(N+1)"2);
dw = w(pnts)-wexact(pnts);
206 dp = p(pnts)-pexact(pnts);
L2errw = dw=MsxJe {elm }xdw'+ L2errw ;
208 L2errp = dpsM=xJe{elm}xdp'+L2errp;
end

214

216

L2err(1,z) = sqrt(Np);

L2err(2,z) =
L2err(3,z) =
z = z+1;

%Convergence

rate_w = (log(L2err(2,1:end-1))-log(L2err(2,2:end)))

sqrt (L2errw) ;
sqrt (L2errp);

Rates

84

./ (log(L2err

(1,2:end))-log(L2err(1,1:end-1)));

rate_p = (log(L2err(3,1:end-1))-log(L2err(3,2:end))) ./ (log(L2err
(1,2:end))-log(L2err(1,1:end-1)));

218
fprintf ('Convergence rate for w: ')
220 disp (rate_w)

2 fprintf ('Convergence rate for p: ')
disp (rate_p)
21| end

226 | VSISV SIS/ SIS ISV SIS/ SIS IS VS ISV SIS ISV SIS/ SIS IS VSISV SIS IS VSISV SISIS SIS SIS ISISISISISISISISISISISISISISISISIS o

SSISS/SISISIS/SISISVS SIS SIS ISIS S SIS SIS ISIS SIS SIS S SISISISISIS SIS ISIS/SISISISISISIS/SISISIS/S/S o

28| % 1 2 3 4 5 6 7 8
c=1[100;,01 0,000, 000, 000,000,000, 0.1 0.20.8;...

230 000000000 O0O0O0O0O0O0,O0O0O0OO0O0O0, 0503 0.2];
% 9 10 11 12 13 14 15 16

23

[¢]

figure (1) ;

S/S/S/S/SISISISISISISISISN Convergence Plo tVs/s/s/s/s/s/s/s/s/s/sISIs/s/slo

24| subplot(1,2,1); %hold on

loglog (L2err(1,:) ,L2err(2,:),"'s-", color',c(N,:))

236 title ('Convergence Plot for w')
xlabel ('Np")

238 ylabel ('L2 w')
axis tight

200| WS/SVSISISISISISISISISIP Convergence Plo tUs/s/s/s/s/s/s/sis/s/s/ss/sso
subplot(1,2,2);% hold on

242 loglog (L2err(1,:),L2err(3,:), 's-"', color',c(N,:))
title ('Convergence Plot for p')

244 xlabel ('Np")
ylabel ('L2 p')

246 axis tight

%Plot Numerical Solution P(x,y,t)

us| figure (2) ;

title ('Numerical Solution for P")

50| xlabel ('x ")

ylabel('y")

x| zlabel ("t ")

plot3 (coord(intma,1), coord(intma,2), qm{2}(:), '«")

85

254

25

=)

25

2]

260

26!

s

264

266

261

o

'S

1C

16

20

%Plot Exact Solution of P(x,y,t)

figure (3);

title ('Exact Solution for P")

plot3 (coord(intma,1), coord(intma,2), gex{2}(:), " '=")
%Plot Numerical Solution w

figure (4);

title ('Numerical Solution for w')

% xlabel ('x")

% ylabel ('y")

% zlabel ('t")

plot3 (coord(intma,1), coord(intma,2), gm{1}(:), «")
%Plot Exact Solution of w

figure (5);

title ('Exact Solution for w')

plot3 (coord(intma,1), coord(intma,2), gex{1}(:), " '=")

%This is the main driver for approximating the 2D Acoustic Wave
%Equation with Upwind Flux on a Square Grid. The grid can be rotated
%various degrees and skewed based on user input.

%Written by Benjamin Davis and Asst. Professor Jeremy Kozdon

Yo Department of Applied Mathematics
% Naval Postgraduate School
% Monterey, CA 93943-5216

%6Synopsis: Discontinuous Galerkin Method for wave equation in
%second order form using inexact integration and upwind flux. The
%outputs are currently four plots: Convergence rates for w and P and
%plots of the numerical and exact solutions.

86

% skew_mesh = 0 rectangular mesh
% skew_mesh = 1 skew element (straight sided)
% skew_mesh = 2 :: skew element (curved elements)

skew_mesh = 2;

%Rotation Angle

grid_rotation_angle=0; %CW rotation in degrees
%For information storage. Don't change.

z=1;

for nel = 2.72(1:3)

W
]

34

38

40

42

44

46

48

50

52

54

ng = N+1; %Number of integration/quadrature points

ngl = N+1; %Number of interpolation points in one direction of an
element

nelx = nel;

nely = nel;

plot_grid = 0; %l will display the grid, 0 will not display the grid

%Interpolation and Integration Points

[psx,w] = legendre_gauss_lobatto (N+1);

%Create Grid

[coord,intma,bsido ,iperiodic ,Np,Ne,nboun, nface] = create_grid_2d(
nelx ,nely ,N, psx, plot_grid ,skew_mesh) ;

fprintf ('Number of Elements %4d with polynomial order %2d\n',6Ne,N)
%Rotate Grid

[coord_rotated] = rotate_grid_v2(coord,intma,Np,Ne,ngl, plot_grid,
grid_rotation_angle);

%Store Rotated COORDS

coord=coord_rotated;

%Construct Lagrange Basis and Jacobian Matrix

[L,dL] = lagrange_basis (psx,psx);

[ksi_x ,ksi_y,eta_x,eta_y,x_ksi,x_eta,y_ksi,y_eta,jac] = metrics2(
coord ,intma,L,dL,Ne, ngl,nq);

%Create Sides/Edge Information for DG

[iside ,jeside] = create_side (intma, bsido ,Np,Ne,nboun, nface,ngl);
[face ,imapl,imapr] = create_face (iside ,intma, nface,ngl);

face = create_face_periodicity(iside ,face,bcoord, nface , nboun);
%Building and Element to Element function

87

58

60

62

64

66

68

74

76

82

84

88

EtoE = EtoEfunct(nface , face ,Ne);
%Constuct M, D, D_ksi, D_eta Matrices
[M,D] = mass_diff2D (L,dL,w) ;

M_1D = M;

M = kron(MM) ;

D_eta = kron(D, eye(ngl));
D_ksi = kron(eye(ngl) ,D);
%Construct L1,L2,L3,L4

e0 = sparse(1,1,1,ngl,1);

en = sparse(ngl,1,1,ngl,1);
L1 = kron(e0',eye(ngl));
L2 = kron(eye(ngl) ,en');

L3 = kron(en',eye(ngl));
L4
%Building Matrix Terms and new Jacobian for solving the RHS for

kron(eye(ngl) ,e0");

equation 5, 6 and 7.
[MAT, MAT _ksi,MAT eta,Je ,A,B,C,D,E,F,G,H] = MatrixTerms2D (Ne, D_ksi,
D_eta,y_eta,y_ksi,x_eta,x_ksi,jac M);
%Building Dx and Dy for RHS
[Dx,Dy] = DxDy(Ne, ksi_x ,ksi_y ,eta_x ,eta_y,D_ksi,D_eta);
%Building the surface jacobians for the faces
[Sj1,Sj2,5j3,Sj4] = SurfaceJac2D (Ne,L1,L2,L3,L4, x_ksi,x_eta ,y_ksi,
y_eta);
Y%Compute the Normals per element
[nx_1,nx_2,nx_3,nx_4,ny_1,ny_2,ny_3,ny_4] = ElementNormals2D (Ne, L1,
L2,L3,L4,x_ksi,x_eta,y_ksi,y_eta,Sjl,S5j2,5j3,5j4);
%Big Matrix of Ones
Ml = ones(nglsngl);
%Building Initial Condition
%Equation for initial condition is the following:
Y%dp/dt = nxpixsin(n+pisx)=zsin(n+pixy)+cos(n+pixzt)
%P (x,y,t) = sin(nspixx)*sin(nspixy)s+sin(nzpixzt)
for e = 1:Ne
for i = l:ngl
for j = 1l:ngl
I = intma(e,i,j);
coord (I,1);

X

88

92

94

96

98

100

102

104

106

108

110

114

116

118

124

126

128

y = coord(I,2);
q0{1}(e,i,j) = sqrt(2)+ns+pissin(ns+pizxx)+sin(n+pi»y);
q0{2}(e,i,j) = 0;
end
end
end
ql = q0;

Yo VS/S)S)S)S)S)S)S)S)S)S)S)SS)S SIS S S S S S S S S S S S S S S S IS IS IS IS IS IS IS IS IS ISISISISISISISISISISISISISISISISISISISI SISV S/ SV
Yo VS/SS)S)S)S)S)S)S)S)S)S)S)S) S S5 S S S S S S S S S S S S S S S S S IS IS IS IS IS IS IS IS ISISISISISISISISISISISISISISISISISISI SIS S/ o
% Time Step Calculation

dt = ((1/Ne)/(N*2));
Nt = round(t_final/dt);
dt = t_final /Nt;

O/ O()()OOOOOOO()OOOO/O/O/O()O()00000000000/0/()()(70()()000000000/0/0/()()000000000000
O /0

Yo VS/SS)S)S)S)S)S)S)S)S)S)S)S)S) S S5 S S S S S S S S S S S S S S S S IS IS IS IS IS IS ISISISISISISISISISISISISISISISISISISISI SIS S/ S o
% Beginning of the RK54 Time integrator
a=1] 0.0,

-567301805773.0/ 1357537059087.0,

-2404267990393.0/ 2016746695238.0,

-3550918686646.0/ 2091501179385.0,

-1275806237668.0/ 842570457699.0];

b = [1432997174477.0/ 9575080441755.0,

5161836677717.0/
1720146321549.0/
3134564353537.0/

13612068292357.0,
2090206949498.0,
4481467310338.0,

2277821191437.0/ 14882151754819.0];

R{1} = 0;
R{2} = 0;
for k = 1:Nt
qm = q0;
for s = 1:5
R{1} = a(s)=*R{1};
R{2} = a(s)=R{2};

%Building all the flux information
[fwl,fw2,fw3, fw4, fpl , fp2 ,fp3,fp4] = UpwindFlux2DFwFp (Ne,qm,
L1,L2,L3,L4,EtoE ,Dx,Dy,nx_1,ny_1,nx_2,ny_2,nx_3,ny_3,nx_4,ny_4);

89

132

134

136

142

144

146

148

156

160

162

%Solving Right hand side

[R1] = RHSDG2Dn(Ne,MAT, Je ,M,M_1D,M1,gqm, Dx,Dy,L1,L2,L3,L4,
nx_1,ny_1, nx_2,ny_2,nx_3,ny_3,nx_4,ny_4,S5j1,5j2,5j3,Sj4 ,fwl, fw2, fw3
,fw4, fpl,fp2 ,fp3,fp4,c , MAT ksi,MAT eta) ;

R{1} = R1{1} + R{1};
R{2} = R1{2} + R{2};
gm{1} = qm{1} + dt«b(s)=R{1};
gm{2} = gm{2} + dt«b(s)*R{2};

end

q0 = gm;

end

0/8/000000()()0()OOOOO()()OOOO(J()()OO()0000000000()()()OO()0000000/00()()()000000
0/0

S//8/8)8)8)S)S) SV S S S S)S)S)S)S)S)S)/S)/S)/S)/S /S /S /SIS /S S S IS S S S S S S S S S S S S S IS IS IS IS ISISISISISISISISISISISISISIS o
%For plotting purposes
%Solving the exact solution at final time.
for e = 1:Ne
for i = 1:ngl
for j = 1l:ngl

I = intma(e,i,j);
x = coord(I,1);
y = coord(l,2);

gex{1l}(e,i,j) = sqrt(2)+ns+pizxsin(ns+pixx)*sin(n+pis+y)=cos(
sqrt(2)snxpixt_final);
gex{2}(e,i,j) = sin(ns+pizxx)ssin(nxpixy)=*sin(sqrt(2)n=pix
t_final);
end
end
end
%Plotting the exact solution vs. numerical solution.
m=1;
for e = 1:Ne
for i = 1l:ngl
for j = 1:ngl

W(m) = qrn{l}(ellr])/

wexact(m) = gex{1l}(e,i,j);

90

164

166

168

178

182

184

186

188

190

192

194

196

198

200

pm) = qn{2}(e,i,j);
pexact(m) = qex{2}(e,i,j);

I = intma(e,i,j);
xp(m) = coord(I);
mem+1;
end
end
end
%Building the Error Plot Information
L2errw = 0;
L2errp = 0;
for elm = 1:Ne
pnts = (elm-1)*+(N+1)"2 + (1:(N+1)72);
dw = w(pnts)-wexact(pnts);
dp = p(pnts)-pexact(pnts);
L2errw = dwsM=xJe {elm}«dw'+ L2errw;
L2errp = dpsMsJe{elm}+dp'+L2errp;
end
L2err(1,z) = sqrt(Np);
L2err(2,z) = sqrt(L2errw);
L2err(3,z) = sqrt(L2errp);
z = z+1;
%Convergence Rates
rate_w = (log(L2err(2,1:end-1))-log(L2err(2,2:end)))

(1,2:end))-log(L2err(1,1:
rate_p = (log(L2err(3,1:
(1,2:end))-log(L2err(1,1:

end-1)));
end-1))-log(L2err(3,2:end)))
end-1)));

fprintf ('Convergence rate for w: ')
disp (rate_w)
fprintf ('Convergence rate for p: ')

disp (rate_p)
end
LSS IS SIS S SV SV SV S SIS IS IS S S S S SV SIS SIS IS IS SIS S VS SISISIS IS SIS S SV SV SISISISISISISISISVS) SV
LS SIS VS SIS/ SIS SISV SIS SIS IS SIS/ SIS SIS SIS ISISIS SIS/ SIS SIS/ SIS ISISISISISISISISISISISISISISISIS/S) o

Y% 1 2 3 4 5 6 7

91

./ (log(L2err

./ (log(L2err

c=[100010000, 000,000,000, 000;,; 0.1 0.20.8;...
202 000000000000 O0O0GO0,O000O,00O00O0, 0503 0.2];
% 9 10 11 12 13 14 15 16
figure (1) ;

VS/S/S/S/SISISISISISISISIN Convergence PlotUS/S/S/SISISISISISISISISISISISSo

26| subplot(1,2,1); %hold on

loglog (L2err(1,:),L2err(2,:), color',c(N,:))

20:

=

208 title ('Convergence Plot for w')
xlabel ('Np")

210 ylabel ('L2 w')
axis tight

N
N

VS/S/S/S/SISISISISISISIP Convergence P 1ot/S/S/S/SIS/SISISISISISISISISt
subplot(1,2,2);% hold on

214 loglog (L2err(1,:),L2err(3,:), color',c(N,:))
title ('Convergence Plot for p')

216 xlabel ('Np")
ylabel ('L2 p')

218 axis tight

%Plot Numerical Solution P(x,y,t)

ao0| figure (2) ;

title ('Numerical Solution for P")

| xlabel ('x ")

ylabel ('y")

zlabel ('t")

plot3 (coord (intma,1), coord(intma,2), qm{2}(:),'s")
26|%Plot Exact Solution of P(x,y,t)

figure (3);

»s| title ('Exact Solution for P'")

plot3 (coord (intma,1), coord(intma,2), gex{2}(:), " '«")

22:

=

230|%Plot Numerical Solution w

figure (4);

| title ('Numerical Solution for w')

plot3 (coord (intma,1), coord(intma,2), gm{1}(:), «")
24|%Plot Exact Solution of w

figure (5);

26| title ("Exact Solution for w')

plot3 (coord(intma,1), coord(intma,2), gex{1}(:), '=")

92

~

o

15

19

23

N
3

29

31

33

37

Yo
Yo
Yo
Yo
Yo
Yo

Function for computing fw and fw with an Upwind Flux with p=0
Boundary Conditions enforced on a washer mesh.
Written by Benjamin Davis and Asst. Professor Jeremy Kozdon
Department of Applied Mathematics
Naval Postgraduate School
Monterey, CA 93943-5216

——— %
function [fwl,fw2,fw3,fw4,fpl,fp2,fp3,bfp4] = UpwindFlux2DFwFpBC (Ne, q1,L1
,L2,L3,L4,EtoEBC,Dx, ...
Dy, nx_1,ny_1,nx_2,ny_2,nx_3,ny_3,nx_4,ny_4)
c = 1;
for k = 1:Ne

nEl = EtoEBC(k,1);
nE2 = EtoEBC(k,2);
nE3 = EtoEBC(k,3);
nE4 = EtoEBC(k,4);

%Side one of element face
wml = L1xql{1}(k,:) ";
wpl = L3+ql{1}(nEl,:) ';
if k == nE1l
wpl = -wml;
end
%Side two of element face
wm2 = L2+ql{1}(k,:) ";
wp2 = L4xql{1}(nE2,:) ';
if k == nE2
wp2 = -wm2;
end
%Side three of element face
wm3 = L3+ql{1l}(k,:) ';
wp3 = L1+ql{1}(nE3,:) ';
if k == nE3
wp3 = -wm3;
end
%Side four of element face
wmd = L4+ql{1}(k,:) ';

93

69

{2

{2

{2

wpd = L2xql{1}(nE4
if k == nE4

wpd = -wnd;
end

’:)

.
7

%Side one of element face

pml

if k == nE1l

ppl = -pml;
end

nx_1{k}*L1*Dx{k}*q1{2
ppl = nx_3{nE1}+L3+Dx{nEl1}+ql
2}(nEl,:) ';

%Side two of element face

pm2 = nx_2{k}+L2+Dx{k}xql{2
pp2 = nx_4{nE2}+L4+Dx{nE2}+ql{

Y(nE2,:) ';
if k == nE2
pp2 = -pm2;
end

%Side Three of element face

pm3 = nx_3{k}+L3+Dx{k}xql{2
pp3 = nx_l{nEB}*Ll*Dx{nEB»}*ql{ }(nE3,:) '"+ny_1{nE3} *Ll*Dy{nES}*ql

}(nE3,:) '
if k == nE3
pp3 = -pm3;
end

%Side Four of element face

pm4 = nx_4{k}+L4+Dx{

}(nE4,:) ';
if k == nE4;

pp4 = -pmd;
end

k}*ql{z
pp4 = nx_2{nE4}+L2+Dx{nE4}+ql

}(k,:)'+1’1y 1{ *Ll*Dy }(k 0)
{2}(nE1,:) "+ny_3{nEl} *L3*Dy {nE1} ql

b(k,:) '+ny_2{k}+L2«Dy{k}+ql{2}(k,:) '
2}(nE2,:) '+ny_4{nE2}+L4+Dy{nE2}«ql

b(k,:) '+ny_3{k}+L3«Dy{k}+ql{2}(k,:)

F(k,:) "+ny_4{k}+L4«Dy{k}s+ql{2}(k,:) '
{2}(nE4,:) "+ny_2{nE4}+L2+Dy{nE4}xql

%Calculation of fpl,fp2,fp3, fp4,fwl, fw2, fw3, fw4

fp1{

fp2{k} = (1/2) = (pm2
fp3{k} = (1/2) +(pm3
fp4{k} = (1/2) «(pm4
fwl{k} = (1/2) +(wpl

pp2)
pp3)
pp4)

wml)

k} = (1/2) «(pml - ppl) + 1/(2xc)x*(wpl-wml);

+ 1/(2xc) +(wp2-wm2) ;
1/(2+c) »(wp3-wm3) ;
1/(2+c) « (wpd-wndd) ;

+ +

c/2+(ppl+pml) ;

94

w

13

19

21

fw2{k} = (1/2)+(Wp2 - wm2) - c/2«(pp2+pm2);
fw3{k} = (1/2) «(wp3 - wm3) - c¢/2x(pp3+pm3);
fwalk} = (1/2) «(wpd - wmd) - c/2x(ppd+pm4);
end
end
B e %

%Function for computing fw and fp with and Upwind flux with no boundary
%conditions being enforced. Used with periodic boundary conditions.
%Written by Benjamin Davis and Asst. Professor Jeremy Kozdon

Yo Department of Applied Mathematics
% Naval Postgraduate School
% Monterey, CA 93943-5216
R %
function [fwl, fw2,fw3,fw4,fpl,fp2,fp3,fp4] = UpwindFlux2DFwFp (Ne, ql,L1,
L2,L3,L4,EtoE,Dx, ...
Dy,nx_1,ny_1,nx_2,ny_2,nx_3,ny_3,nx_4,ny_4)
c =1;
for k = 1:Ne

nEl = EtoE(k,1);

nE2 = EtoE(k,2);

nE3 = EtoE(k,3);

nE4 = EtoE(k,4);

%Side one of element face

wml = L1«ql{1}(k,:) ';

wpl = L3+ql{1}(nEl,:) ';

%Side two of element face

wm2 = L2+ql{1}(k,:) ";

wp2 = L4xql{1}(nE2,:) ';

%Side three of element face

wm3 = L3+ql{1l}(k,:) ';

wp3 = L1xql{1}(nE3,:) ';

%Side four of element face
= L4x+ql{1}(k,:) ';

wpd = L2xql{1}(nE4,:) ';

%Side one of element face

95

33

37

41

end

pml =
ppl =

2}(nEl,:)

%Side
pm2 =
pp2 =

{2}(nE2,:)

{2

{2

%Side
pm3 =
pp3 =
}(nE3,:)
%Side
pm4 =

pp4 =
}(nE4,:)

nx_1{k}«L1+Dx{k}+ql{2}(k,:) "+ny_1{
nx_3{nE1}+L3+Dx{nE1}+ql{2}(nEl

k}+L1+Dy{k 23 (k,:) "
,1) '+ny_3{nE1l} *L3*Dy {nE1} ql
two of element face

nx_2{k}*L2*Dx{k}*q1{2}(k,
nx_4{nE2}+L4+Dx{nE2}+ql

'
7

1) '+ny_2{k}«L2+Dy{k}+ql{2}(k,:) '
{2}(nE2,:) +r1y_4{nE2 +L4+Dy{nE2}+ql

Three of element face
nx_3{k}+L3+Dx{k}+ql{2}(k,
nx_l{nE3}>eL1>er{nE3}>eq1{

'
’

1) '+ny_3{k
}(nE3/

}»L3+Dy{k}+ql{2}(k,:) '
1) '+ny_1{nE3}+L1+Dy{nE3}+ql

Four of element face
nx_4{k}+L4+Dx{k}+ql{2}(k,
nx_2{nE4}+L2+Dx{nE4}xql{2

1) +ny_4/{
}(nE4,

k}+L4+Dy{k}+ql{2}(k,:) '
1) '+ny_2{nE4}+L2+Dy{nE4}xql

',
’

%Calculation of fpl,fp2,fp3, fp4,fwl, fw2, fw3, fw4

end

= (1/2) +(pml -
= (1/2) +(pm2 -
= (1/2) +(pm3 -
= (1/2) «(pm4 -

ppl) + 1/(2+c)«(wpl-wml);
pp2) + 1/(2xc)+(wp2-wm2);
pp3) + 1/(2xc)+(wp3-wm3);
pp4) + 1/(25c) s+ (wpd-wimd) ;

wml) -
wm2) -
wm3) -
wmd) -

= (1/2) «(wpl -
= (1/2) «(wp2 -
= (1/2) »(wp3 -
= (1/2) «(wp4 -

c/2+(ppld+pml) ;
c/2+(pp2+pm2) ;
c/2x+(pp3+pm3) ;
c/2x(pp4+pm4) ;

N

'

o,

(o]
6| %
Yo

%Central Flux Routine.

Provides the center flux values for fw and fp

%for the two-dimensional problem.
%Written by Benjamin Davis

Department of Applied Mathematics

Naval Postgraduate School
Monterey, CA 93943-5216

24

26

32

38

42

function [fwl,fw2,fw3,fw4,fpl,fp2,fp3,fp4] = CenterFlux2DFwFp (Ne,ql,L1,

L2,L3,L4,EtoE ,Dx, ...
Dy,nx_1,ny_1,nx_2,ny_2,nx_3,ny_3,nx_4,ny_4)
for k = 1:Ne
nEl = EtoE(k,1);
nE2 = EtoE(k,2);
nE3 = EtoE(k,3);
nE4 = EtoE(k,4);
%Side one of element face
wml = L1+ql{1}(k,:) "'
wpl = L3xql{1}(nEl,:) ';
%Side two of element face
wm2 = L2xql{1}(k,:) "
wp2 = L4+ql{1}(nE2,:) ';
%Side three of element face
wm3 = L3xql{1}(k,:) "
wp3 = L1+ql{1}(nE3,:) "'
%Side four of element face
wmd = L4«ql{1}(k,:) ';
wp4 = L2+ql{1}(nE4,:) ';

fwl{k} = (1/2)+(wpl - wml);
fw2{k} = (1/2) +(wp2 - wm2);
fw3{k} = (1/2) «(wp3 - wm3);
fwa{k} = (1/2) «(wpd - wmd);

%Calculation of fpl,fp2,fp3, fp4
%Side one of element face
pml = nx_1{k}+L1+Dx{k}+ql1{2}(k,:) '+ny_1{k}+L1+Dy{k

ppl = nx_3{nE1}+L3+Dx{nE1}+ql{2}(nEl,:) "+ny_3{nEl} *L3*Dy nEl

{2}(nE1,:) *;
%Side two of element face
pm2 = nx_2{k}«L2+Dx{k}+ql{2}(k,:) '+ny_2{k}+«L2+Dy{k

x-ql

pp2 = nx_4{nE2}+L4+Dx{nE2}+ql{2}(nE2,:) "+ny_4{nE2} >eL4>eDy{nE2}>eq1

2} (nE2,:) ';
%Side Three of element face
pm3 = nx_3{k}+L3+Dx{k}xql{2}(k,:) '+ny_3{k}+L3+Dy{k

pp3 = nx_l{nEB}*Ll*Dx{nEB} 1{2}(nE3,:) "+ny_1{nE3} *Ll*Dy nE3 *ql

{2}(nE3,:) *;

97

44

46

48

52

7

%Side Four of element face

pm4 nx_4{k}«L4+Dx{k}+ql{2}(k,:) "+ny_4{k}+L4+Dy{k}+ql{2}(k,:) '

pp4 nx_2{nE4}+L2+Dx{nE4}xql1{2}(nE4,:) '+ny_2{nE4}+L2+Dy{nE4}+ql
(2)(nE4,:) '

fpl{k} = (1/2)«(pml - ppl);

fp2{k} = (1/2) +(pm2 - pp2);

fp3 ik} = (1/2) «(pm3 - pp3);

fp4{k} = (1/2) «(pm4 - pp4);

end

end
R e T T TP %
% Function to solve the combined discretized equations from Chapter 4
% for the 2D Acoustic Wave equation. Computes RHS and inverts the
% required matrices to compute w and p for second order wave equation.
% Written by Benjamin Davis and Asst. Professor Jeremy Kozdon
Yo Department of Applied Mathematics
% Naval Postgraduate School
Yo Monterey, CA 93943-5216
R b T T %

function [R] = RHSDG2Dn(Ne,MAT, Je ,M,M_1D,M1, qs ,Dx,Dy,L1,L2,L3,L4,nx_1,

ny_1,nx_2,ny_2,nx_3,ny_3,nx_4,ny_4,5j1,5j2,5j3,Sj4 ,fwl, fw2,fw3, fw4,
fpl,fp2,fp3,fp4,c,MAT ksi, MAT eta)

R{1} = zeros(size(qgs{l}));

=
N
Il

zeros (size(qs{2}));

for e = 1:Ne
R{2}(e,:) = (MAT{e}+Ml'xJe{e}sM)xqs{1l}(e,:) ';

R{2}(e,:) = R{
M_lD Sjl {e}*fwl{
2}(e,:) = R{
+M_1Dx Sj2 { e}« fw2{

J(e,:) " + ((Dx{e}'+L1'snx_1{e}+ Dy{e} '+L1'+ny_1{e})
b
f(e,:) " + ((Dx{e}'+L2'snx_2{e}+ Dy{e} '+L2'+ny_2{e})
b

o N o N

98

23

N
G

31

35

37

41

43

~

R{2}(e,:) = R{2})(e,:) "' + ((Dx{e} '«L3's+nx_3{e}+ Dy{e} '+L3'+ny_3{e})
+M_1DxSj3 {e}+fw3{e});

R{2}(e,:) = R{2})(e,:) "' + ((Dx{e}'xL4'snx_4{e}+ Dy{e} 'xL4'+ny_4{e})
*M_lD*Sj4{e}*fw4{e});

R{l}(e,:) = c"2+(L1'+M_1D+Sjl{e}«fpl{e}+ L2'+M_1D«+Sj2{e}+fp2{e}+L3
"+M_ 1D« Sj3 {e}+ fp3{e}+L4'+M_ 1D+ Sj4 {e}«fpd{e});

R{1}(e,:) = R{1}(e,:) ' - c”2+(MAT ksi{e}+MAT etaje})«qs{2}(e,:) ';
Mill{e} = (MAT{e}+Ml'«Je {e}«M);

[L_1,U_1] = lu(Mll{e}, 'vector');

R1 = U_1 \ (L_1 \ R{2}(e,:)");

Rl = R1';

R{2}(e,:) = R1;

M1 2{e} = Je{e}+M;
[L_2,U2] = lu(M1_2{e}, 'vector');

R2 = U2 \ (L2 \ R{l}(e,:)");
R2 = R2';
R{1}(e,:) = R2;

end
end

%This function computes the LGL grid and elements in 2D. Modified by

s|%Jeremy Kozdon and Benjamin Davis for thesis project to produce a skewed

Y%amesh .

_lo
5| /0

%Function given to F.X. Giraldo's MA4245 class August 2014.
%Modified: Jan 2015
%Written by F.X. Giraldo on 4/2008

99

11

17

21

25

27

29

3

33

37

39

41

43

45

T

Yo
Yo
Yo
Yo
Yo
Yo
Yo
Yo
Yo
Yo
Yo
Yo
Yo
Yo
Yo
Yo
Yo

Department of Applied Mathematics

Naval Postgraduate School
Monterey , CA 93943-5216

INPUT LIST:

OUTPUT LIST:

nelx and nely are the number of elements in x and y

nop is the polynomial order

xgl are the interpolation points on the element.

coord are the coordinates: x=coord(:,1) and y=coord(:,2)

intma is the connectivity list that points to the global

gridpoint number
bsido is the boundary data (used by ISIDE and FACE)
iperiodic points to another point if periodicity is

applic

npoin
nelem
nboun

nface

ab

le

= number

number
number

number

of global points

of elements

of boundary edges

of faces/edges in the grid

function [coord,intma, bsido,iperiodic ,npoin,nelem,nboun, nface] =

create_grid_2d (nelx,nely ,nop,xgl, plot_grid , skew_mesh)

%Define Grid Dimensions

ngl=nop+1;

npoin=(nopsnelx + 1)+(nopxnely + 1);

nelem=nelxxnely;

nboun=2snelx + 2snely;

nface=2«nelem + nelx + nely;

%Initialize Global Arrays

coord=zeros (npoin,2);

intma=zeros (nelem,ngl,ngl);

bsido=zeros (nboun,4) ;

iperiodic=zeros(npoin,1);

%Initialize Local Arrays

node=zeros (npoin,npoin) ;

%Set some constants

xmin=-1;

xmax=+1;

ymin=-1;

ymax=+1;

dx=(xmax-xmin) /nelx;

100

7| dy=(ymax-ymin) /nely ;

nop=ngl-1;

s|nx=nelxznop + 1;

ny=nelysnop + 1;

51| 7GENERATE COORD

ip=0;
1 =0;
for k=1:nely
yO0=ymin + real(k-1)=:dy;
if (k ==1)
7 11=1;
else
59 11=2;
end
61
for I=11:ngl
6 ji=ii+L
i1 =0;

for i=1:nelx
x0=xmin + real (i-1)=xdx;
xc = x0 + [0,1;0,1]«dx;
yc = y0 + [0,0;1,1]«dy;
if (skew_mesh==1)
xc=xc+(1/8) +sin (pixryc).»(1-xc).«(1+xc) ;%x;
yc=yc+(1/8) «sin(pixxc).+(1-yc).«(1+yc);%y;
end
if (i ==1)
j1=1;
else
j1=2;
end
for j=jl1:ngl
ii=ii + 1;
ip=ip + 1;
ax=(xgl (j)+1)/2;
ay=(xgl(1)+1)/2;

x = xc(1,1)x(1-ax)=*(1-ay) + xc(1,2)+ax=(l-ay)...
+ xc(2,1)+(1-ax)+(ay) + xc(2,2)+ax=(ay);
y = yc(l,1)+(1-ax)=(1-ay) + yc(1,2)+axx(1-ay) ...

101

89

91

101

103

105

107

109

119

+ yc(2,1)«(1-ax)«(ay) + yc(2,2)=axx(

coord (ip,1)=x;
coord (ip,2)=y;
if (skew_mesh==2)

ay);

coord (ip,1)=x +(1/8)xsin(pixy)=*(1-x)=(1+x);%x;
coord (ip,2)=y +(1/8)+sin(pixx)+(1-y)=(1+y);%y;

end
node(ii, jj)=ip;
end %j

end %i
end %I
end 9%k
%GENERATE INTMA
ie=0;
for k=1:nely
for i=1:nelx
ie=ie+1;
for 1=1:ngl
jj=(ngl-1)+(k-1) + 1;
for j=1:ngl
ii=(ngl-1)«(i-1) + j;
ip=node(ii,jj);
intma (ie,j,1)=ip;
end %j
end %l
end %i

slend %k

%Generate BSIDO

5| ib =0;

for i=1:nelx
ie=i;
ib=ib +1;
il=(i-1)«(ngl-1) + 1;
i2=(i-1)+(ngl-1) + ngl;
ipl=node(il , 1);
ip2=node(i2,1);
bsido (ib ,1)=ip1;
bsido (ib ,2)=ip2;

102

129

7| end

bsido (ib ,3)=ie;
bsido (ib ,4) =6;

%Right Boundary

for

end

i=1:nely
ie=(nelx)«(i);

ib=ib +1;
il=(i-1)+(ngl-1) + 1;
i2=(i-1)+(ngl-1) + ngl;
ipl=node(nx,il);
ip2=node(nx,i2);
bsido (ib ,1)=ip1;
bsido (ib ,2)=ip2;
bsido (ib ,3)=ie;
bsido (ib ,4) =6;

%lop Boundary

for

53| end

i=nelx:-1:1

ie=nelem - (nelx - i);
ib=ib +1;
il=(i-1)+(ngl-1) + ngl;
i2=(i-1) «(ngl-1) + 1;
ipl=node(il ,ny);
ip2=node(i2 ,ny);
bsido (ib ,1)=ip1;
bsido (ib ,2)=ip2;
bsido (ib ,3)=ie;
bsido (ib ,4) =6;

%Left Boundary

55| for

i=nely:-1:1
ie=(nelx)«(i-1) + 1,
ib=ib +1;
il=(i-1)+(ngl-1) + ngl;
i2=(i-1) «(ngl-1) + 1;
ipl=node(1,il);
ip2=node(1,i2);
bsido (ib ,1)=ip1;
bsido (ib ,2)=ip2;

103

169

3

179

18

189

191

195

197

199

201

bsido (ib ,3)=

ie;

bsido (ib ,4) =6;

end

7|%Periodicity

for i=1:npoin
iperiodic(i)=
end
%X-Periodicity
for i=1:ny
il=node(1,i);
i2=node(nx,i)
iperiodic(i2)
end

77|%Y-Periodicity

i=1:nx
il=node(i,1);
i2=node (i, ny)

for

iperiodic(i2)
end

3| %Plot Grid

if (plot_grid ==
x=zeros (5,1)
y=zeros (5,1)
figure;

hold on;

ij;

7

=il ;

4

=iperiodic (il);

1)

4

for e=1:nelem

for j=1:
for

ngl-1

i=1:ngl-1
il=intma(e,i,j);
i2=intma(e,i+1,j);
i3=intma(e,i+1,j+1);
i4=intma(e,i,j+1);

x(1)=coord (il ,1); y(1)=coord(il,k2);
x(2)=coord (i2 ,1); y(2)=coord(i2,2);
x(3)=coord (i3 ,1); y(3)=coord(i3,2);
x (4)=coord (i4,1); y(4)=coord(i4,2);
x(5)=coord (il ,1); y(5)=coord(il,2);

plot_handle=plot(x,y,

'

-t

set (plot_handle, 'LineWidth ' ,1.5);

104

203

205

207

211

213

215

217

219

N

'S

&)

10

14

end

end
il=intma(e,1,1);
i2=intma(e,ngl,1) ;
i3=intma (e,ngl,ngl) ;
i4=intma(e,1,ngl);
x(1)=coord (il ,1); y(1)=coord(il,2);
x(2)=coord(i2,1); y(2)=coord(i2,2);
x(3)=coord (i3 ,1); y(3)=coord(i3,2);
x(4)=coord(i4 ,1); y(4)=coord(i4,2);
x(5)=coord (il ,1); y(5)=coord(il,2);
plot_handle=plot(x,y, '-b");
set (plot_handle, 'LineWidth ' ,2);

end

title_text=['Grid Plot For: Ne = ' num2str(nelem) ', N = ' num2str(

nop) |;
title ([title_text], 'FontSize ' ,18);
xlabel ('X", 'FontSize ',18);
ylabel ('Y', 'FontSize ' ,18);
axis image
end

%Function provided to Professor F.X. Giraldo's MA4245 class.
%Used by Benjamin Davis for his thesis project.

%This subroutine creates the array ISIDE which stores all of
%the information concerning the sides of all the elements.
%Written by Francis X. Giraldo on 1/01

% Naval Postgraduate School

% Department of Applied Mathematics

% Monterey, CA 93943-5502

% INPUT LIST: intma = element connectivity

Yo bsido = boundary info (which points are on a boundary,
% which element it belongs to and the boundary
Y% condition) .

Yo npoin = number of global points

105

16

18

20

22

24

26

30

32

34

38

40

42

44

46

48

g1
o

% nelem = number of elements

% nboun = number of boundary faces/edges

% nside=nface are the number of sides/face/edges in the grid
% ngl = number of points in one direction in an element

% OUTPUT LIST: iside = face information such as which points are on a

% face which elements they belong to and, if a

% boundary, what is the boundary condition.

Yo jeside = for each element and each edge gives the FACE

Yo number

R e e e T %
function [iside ,jeside] = create_side (intma, bsido,npoin,nelem ,nboun,

nface ,ngl)
%global arrays
iside = zeros(nface ,4);
jeside= zeros(nelem,4);
%local arrays
lwher = zeros(npoin,l);
lhowm = zeros(npoin,l);
icone = zeros(5xnpoin,1);
inode = zeros(4,1);
jnode = zeros(4,1);
%Fix Inode
inode (1) =1;
inode (2)=ngl;
inode (3)=ngl;
inode (4) =1;
jnode (1) =1;
jnode (2) =1;
jnode (3)=ngl;
jnode (4)=ngl;
%count how many elements own each node
for in=1:4
for ie=1:nelem
ip=intma (ie ,inode(in),jnode(in));
lhowm (ip)=lhowm(ip) + 1;
end %ie

50 end %in

%track elements owning each node
Iwher (1) =0;

106

for ip=2:npoin

U1
Sy

Iwher (ip)=lwher(ip-1) + lhowm(ip-1);
end %ip
%another tracker array

lhowm = zeros(npoin,l);

ss) for in=1:4

for ie=1:nelem

60 ip=intma (ie ,inode(in),jnode(in));
lhowm (ip)=lhowm(ip) + 1;

62 jloca=lwher(ip) + lhowm(ip);
icone(jloca)=ie;

64 end %ie

end %in

66| 9.OOP OVER THE NODES

iloca=0;

es| for ip=1:npoin

ilocl=iloca;

70 iele=lhowm(ip);
if (iele ~=0)
72 iwher=lwher (ip);
%L O0P OVER THOSE ELEMENTS SURROUNDING NODE IP
74 ipl=ip;

for iel=1:iele
76 ie=icone (iwher+iel) ;

%find out position of ip in intma

78 for in=1:4
inl=in;
80 ipt=intma(ie ,inode(in) ,jnode(in));
if (ipt == ip)
82 break
end
84 end %in
%Check Edge of Element IE which claims IP
86 j=0,‘
for jnod=1:2:3
88 iold =0;
j=j+1;
90 in2=in + jnod;
if (in2 > 4)

107

92 in2=in2 -4;
end
94 ip2=intma(ie ,inode(in2) ,jnode(in2));
if (ip2 >= ipl)
9% %check whether side is old or new
if (iloca ~= ilocl)
98 for is=ilocl+1:iloca
iside (is ,2);
100 jloca=is;
if (iside(is,2) == ip2)
102 iold =1;
break;
104 end
end %is
106 end %iloca
if (iold == 0)
108 9NEW SIDE
iloca=iloca + 1;
110 iside (iloca ,1)=ip1;
iside (iloca ,2)=ip2;
112 iside (iloca ,2+j)=ie;
elseif (iold == 1)
114 901D SIDE
iside (jloca ,2+j)=ie;
116 end %iold
end %ip2
118 end %jnod
end %iel
120 %Perform some Shifting to order the nodes of a side in W
direction
for is=ilocl+1:iloca
122 if (iside(is,3) == 0)
iside (is ,3)=iside (is ,4);
124 iside (is ,4)=0;
iside (is ,1)=iside (is ,2);
126 iside (is ,2)=ip1l;
end %iside
128 end %is
end %if iele

108

end %ip

@

if (iloca ~= nface)
132 disp('Error in SIDE. iloca nface = ');
iloca
134 nface
pause
136| end

%RESET THE BOUNDARY MARKERS
13| for is=1:nface

if (iside(is,4) == 0)
140 il=iside (is,1);
ir=iside (is ,2);

142 ie=iside (is ,3);

for ib=1:nboun

144 ibe=bsido(ib,3) ;
ibc=bsido (ib ,4) ;
146 if (ibe == ie)
ilb=bsido (ib,1);
148 irb=bsido (ib,2);
if (ilb == il && irb == ir)
150 iside (is ,4)=-ibc;
break
152 end %ilb
end %ibe
154 end %ib

end %iside

56| end %is

9FORM ELEMENT/SIDE CONNECTIVITY ARRAY
155 for is=1:nface

iel=iside (is ,3);

160 ier=iside (is ,4);
isl=iside(is ,1);

162 is2=iside (is ,2);
%LEFT SIDE

164 for in=1:4

il=intma (iel ,inode(in) ,jnode(in));

166 inlzin + 1,'
if (inl > 4)
168 inl=1;

109

170

172

176

178

180

182

184

186

188

]

&)

end %inl
i2=intma (iel ,inode(inl) ,jnode(inl));
if ((isl == il) && (is2 == i2))
jeside (iel ,in)=is;
end %isl1
end %in
YRIGHT SIDE
if (ier > 0)
for in=1:4
il=intma (ier ,inode(in) ,jnode(in));
inl=in + 1;
if (inl > 4)
inl=1;
end %inl
i2=intma (ier ,inode(inl) ,jnode(inl));
if ((isl == i2) && (is2 == il))
jeside (ier ,in)=is;

end %is1
end %in
end %ier
end %is
T T T T %

%Function provided to Professor F.X. Giraldo's MA4245 class. Used by
%Benjamin Davis. This subroutine constructs the Side Information for
%a High Order Spectal Element Quads

%Written by Francis X. Giraldo

% Department of Applied Mathematics

% Naval Postgraduate School

% Monterey, CA 93943-5216

% INPUT LIST: iside = face information to know which points are on a
Yo face and which elements they belong to

Yo intma = element connectivity

% nface = number of faces/edges in the grid

% ngl = number of interpolation points in one direction
Yo in an element

110

33

w
3

43

45

49

% OUTPUT LIST: face = face information stating which local edge number

% the face is on and which elements they belong to

Yo (left and right neighbors).are the metric terms

% needed to imapl and imapr give the tensor -product (i,j)
Yo points of the edge points.

R e %

function [face ,imapl,imapr]=create_face(iside ,intma, nface,ngl)
%global arrays

s| face=zeros (nface ,4);

imapl=zeros(4,2,ngl);

5| imapr=zeros (4,2,ngl);

%local arrays
inode=zeros (4,1);
jnode=zeros (4,1);

9|%Construct Boundary Pointer

inode (1) =1;
inode (2)=ngl;
inode (3)=ngl;
inode (4) =1;
jnode (1) =1;

5| jnode (2) =1;

jnode (3)=ngl;

jnode (4)=ngl;

%Construct IMAP arrays

for 1=1:ngl
Yeta=-1
imapl(1,1,1)=1;
imapl(1,2,1)=1;
imapr(1,1,1)=ngl+1-1;
imapr(1,2,1)=1;
Y%ksi=+1
imapl(2,1,1)=ngl;
imapl(2,2,1)=1;
imapr(2,1,1)=ngl;
imapr(2,2,1)=ngl+1-1;
Poeta=+1
imapl(3,1,1)=ngl+1-1;
imapl(3,2,1)=ngl;
imapr(3,1,1)=1;

111

69

81

89

imapr(3,2,1)=ngl;
Y%ksi=-1
imapl(4,1,1)=1;
imapl(4,2,1)=ngl+1-1;
imapr(4,1,1)=1;
imapr(4,2,1)=1;
end %I
%loop thru the sides
for i=1:nface
ipl=iside(i,1);
ip2=iside (i,2);
iel=iside (i,3);
ier=iside (i,4);
%check for position on Left Element
for j=1:4
j1=j;
j2=j+1;
if (j2 > 4)
j2=1;
end %j2
jpl=intma(iel ,inode(jl1),jnode(jl));
jp2=intma(iel ,inode(j2) ,jnode(j2));
if (ipl == jpl && ip2 == jp2)
face(i,1)=j;
break; %leave] loop
end %ipl
end %j
%check for position on Right Element
if (ier > 0)
for j=1:4
j1=j;
j2=j+1;
if (j2 > 4)
j2=1;
end %j2
jpl=intma (ier ,inode(j1) ,jnode(jl));
jp2=intma (ier ,inode(j2) ,jnode(j2));

if (ipl == jp2 && ip2 == jpl)

112

93 face(i,2)=j;

break; %leave] loop
95 end %ipl
end %j
97 end %ier

%Store Elements into face
9 face(i,3)=iel;
face(i,4)=ier;

01| end %i

%Function for changing the face code to enforce p=0 boundary conditions

W

%for 2nd order acoustic wave equation on a washer.
%Written by Benjamin Davis Created: 09 May 2015

5% Department of Applied Mathematics
% Naval Postgraduate School
7% Monterey , CA 93943-5216
R e T e %
ol function[face] = faceBC(nface, face)
for k = 1:nface
1 if face(k,1) == 2
if face(k,4) == -6
13 face(k,4) = -1;
end
15 end
end
17 for k = 1:nface
if face(k,1) == 4
19 if face(k,4) == -6
face(k,4) = -1;
21 end
end
23 end
end

113

N

'S

=)

10

16

2

24

2

=

2

@

N
3

34

36

38

%Function provided by Professor F.X. Giraldo to his MA4245 class.
%Used by Benjamin Davis
%This subroutine builds Periodic BCs along the 4 edges of a rectangular

Y%domain .

%Written by Francis X. Giraldo on 2/2007

Yo Naval Postgraduate School

% Department of Applied Mathematics

% Monterey, CA 93943-5216

% INPUT LIST: iside = face information

Y% face = more face information

Yo coord = gridpoint coordinates

% nface = number of faces

% nboun = number of boundaries

% OUTPUT LIST: face = augments the FACE data structure to include

%o periodicity

B e e T %
function face = create_face_periodicity (iside ,face,coord, nface, nboun)
%Constant

tol=le-6;

%Local arrays
ileft=zeros(nboun/4,1);
iright=zeros (nboun/4,1);
itop=zeros (nboun/4,1);
ibot=zeros (nboun/4,1);
%initialize
nleft=0; nright=0; ntop=0; nbot=0;
%Find Extrema of Domain
xmax=max(coord (: ,1)); xmin=min(coord (:,1));
ymax=max(coord (: ,2)); ymin=min(coord(:,2));
%loop thru sides and extract Left, Right, Bot, and Top
for is=1:nface
%Check for Periodicity Edges
ier=face (is ,4);
if (ier == -6)
il=iside (is,1); i2=iside (is ,2);
xm=0.5%(coord(il,1) + coord(i2,1));
ym=0.5%(coord(il,2) + coord(i2,2));

114

42

44

46

48

52

54

56

[$)]
>3]

60

64

66

68

70

~
N

74

%check Grid Point
if (abs(xm - xmin) < tol) %left boundary
nleft=nleft + 1;
ileft (nleft)=is;
elseif (abs(xm - xmax) < tol) %right boundary
nright=nright + 1;
iright (nright)=is;
elseif (abs(ym - ymin) < tol) %bottom boundary
nbot=nbot + 1;
ibot (nbot)=is;
elseif (abs(ym - ymax) < tol) %top boundary
ntop=ntop + 1;
itop (ntop)=is;
else
disp ('No match in PERIODIC_BCS for is ier = ");
is
ier
pause
end %if
end %ier
end %is
%Loop through Periodic BCs
%First: Do Left and Right
for i=1:nleft
isl=ileft(i);
il=iside (isl ,1);
yll=coord (il ,2);
%Search for Corresponding Right Edge
for j=l:nright
isr=iright(j);
i2=iside (isr ,2);
yr2=coord(i2,2);
if (abs(yll-yr2) < tol) %they match
face(isl ,2)=face(isr ,1);
face(isl ,4)=face(isr,3);
face(isr ,3) =-6; %means skip it due to Periodicity
iside (isl ,4)=iside (isr ,3);
iside (isr ,3) =-6;
break;

115

78 end %if

end %j

s0| end Y%i

%Second: Do Top and Bottom
»| for i=1:nbot

isl=ibot(i);

84 il=iside (isl ,1);
xll=coord (il ,1);
86 %Search for Corresponding Top Edge
for j=1l:ntop
88 isr=itop(j);
i2=iside (isr ,2);
90 xr2=coord (i2,1);
if (abs(xll-xr2) < tol) %they match
92 face(isl ,2)=face(isr,1);
face(isl ,4)=face(isr ,3);
%4 face (isr ,3) =-6; %means skip it due to Periodicity
iside (isl ,4)=iside (isr ,3);
9% iside (isr ,3) =-6;
break;
98 end %if
end %j
10| end Y1
R e %

N

%Function given to Professor F.X. Giraldo's MA4245 class. Modified by
%Ben Davis and Jeremy Kozdon.

'

%This function computes the Metric Terms for General 2D Quad Grids.
%Written by F.X. Giraldo on 4/2008

6% Department of Applied Mathematics
Yo Naval Postgraduate School
8| % Monterey, CA 93943-5216
% INPUT LIST: coord = gridpoint coordinates
10| % intma = element connectivity
% psi = basis functions defined as psi(NGL,NQ)
12| % dpsi = derivative of basis functions defined as

116

16

20

22

24

2

3]

30

32

o
h g

36

38

4

44

46

48

50

Y% dpsi (NGL,NQ)

% nelem = number of elements
% ngl =

% an element

%

% direction in an element.

% OUTPUT LIST: ksi_x, ksi_y, eta_x,eta_y

number of interpolation points in one direction in

nq = number of integration/quadrature points in one

are the metric terms needed to

Yo compute derivatives in

% physical space

% x_ksi,x_eta,y_ksi,y_eta = are the metric terms needed to
Yo compute derivatives in

% physical space

% jac = weightsxJacobian defined as jac(nelem,nq,nq)

R e T e %

function [ksi_x , ksi_y, eta_x,eta_y,x_ksi,x_eta,y_ksi,y_eta,jac] =

metrics2 (coord ,intma , psi, dpsi,nelem,ngl,nq)

%Initialize Global Arrays
ksi_x=zeros (nelem,nq,nq) ;
ksi_y=zeros(nelem,nq,nq) ;
eta_x=zeros (nelem,nq,nq) ;
eta_y=zeros (nelem,nq,nq) ;
jac=zeros (nelem,nq,nq);

s|%Initialize Local Arrays

x_ksi=zeros (nelem,nq,nq) ;
x_eta=zeros (nelem,nq,nq) ;
y_ksi=zeros (nelem,nq,nq) ;
y_eta=zeros (nelem,nq,nq) ;
x=zeros (ngl,ngl);
y=zeros(ngl,ngl);
%loop thru the elements
for ie=1:nelem
%Store Element Variables
for j=1:ngl
for i=1:ngl
ip=intma(ie ,i,j);
x(i,j)=coord(ip,1);
y(i,j)=coord(ip,2);
end %i
end %j

117

52

56

58

60

62

64

]

~

%Construct Mapping Derivatives: dx/dksi, dx/deta, dy/dksi, dy/deta
[x_ksi(ie,:,:) ,x_eta(ie,:,:)]=map_deriv(psi,dpsi,x,ngl,nq);
[y_ksi(ie ,:,:) ,y_eta(ie ,:,:)]=map_deriv(psi,dpsi,y,ngl,nq);
%Construct Inverse Mapping: dksi/dx, dksi/dy, deta/dx, deta/dy

for j=1:nq
for i=1:nq
xjac=x_ksi(ie,i,j)+y_eta(ie,i,j) - x_eta(ie,i,j)xy_ksi(ie,i,j);

ksi_x(ie,i,j)=+1.0/xjacxy_eta(ie,i,j);
ksi_y(ie,i,j)=-1.0/xjacxx_eta(ie,i,j);
eta_x(ie,i,j)=-1.0/xjacxy_ksi(ie,i,j);
eta_y(ie,i,j)=+1.0/xjacxx_ksi(ie,i,j);
jac(ie,i,j)=abs(xjac);

end %i

end %j

end %ie

... %
% Function created for taking the x coordinates from coord and
% turning them into radius polar coordinates based on user inputs.
%Written by Benjamin Davis %Created: 14 April 2015
Yo Department of Applied Mathematics
Yo Naval Postgraduate School
% Monterey, CA 93943-5216
R e T T %
function[R] = radius(coord,rl,r2)
n = length(coord(:,1));
for i = I:n

R(i,1) = ((r2-r1)/2)scoord(i,1) + (rl + r2)/2;
end
end

118

N

'S

16

&)

o

13

%Function to turn the y coord into theta. Conversion from Cartesian to
%polar coordinates. Also, rn is a scaling portion of the washer.
%Written by Benjamin Davis Created: 14 April 2015

Yo Department of Applied Mathematics

Yo Naval Postgraduate School

Yo Monterey, CA 93943-5216

R e e e T %
function [theta] = thetapolar(coord,rn)

n = length(coord (:,2));

rl = 0;
r2 = (2+pi)/rn;
for i = 1:n

theta(i,1) = ((r2-rl)/2)xcoord(i,2) + (rl + r2)/2;
end
end

%Function to overwrite original coord for the conversion to polar mesh.
%Function is required for the washer mesh.
%Written by Benjamin Davis Created: 14 April 2015

% Department of Applied Mathematics
% Naval Postgraduate School
% Monterey , CA 93943-5216
R e T %
function[coord] = newcoord (R, theta ,coord)
n = length(coord(:,1));
for i = 1:n

coord (i,1)
coord (i,2)

R(i)xcos(theta(i));
R(i)s+sin(theta(i));

end
end

119

W

&

11

1t

o

17

21

23

25

27

29

31

33

35

%Element to Element function with Boundary Conditions for Washer Grid
%Synopsis: Element to element function for identifying and storing
%information for looking across the faces of an element to it's
%corresponding neighbor.

%Written by Benjamin Davis

Yo Department of Applied Mathematics

% Naval Postgraduate School

% Monterey, CA 93943-5216

%

Yo pL = Face of Left Element

% pR = Face of Right Element

Yo Ls = Number of Left Element

Y% Rs = Number of Right Element

%Output: EtoE is a Matrix of Number of Elements (Row) vs. the Number

%of Sides per element (Four for a square grid). For each element, it
%displays its corresponding neighbor with respect to boundary
%conditions .

function [EtoEBC] = EtoEfunctBC(nface, face , Ne)
EtoEBC = zeros(Ne,4);
for I=1:nface

pL = face(l,1); %Face of left element
pR = face(l,2); %Face of Right Element
Ls = face(1,3); %Number of Left Element
Rs = face(1,4); %Number of Right Element
if Rs == -1
EtoEBC(Ls,pL) = Ls;
elseif (Ls ~= -6 && Rs ~= -6)

EtoEBC(Ls,pL) = Rs;
EtoEBC(Rs,pR) = Ls;
end
end
end

120

W

&

~

11

15

17

23

25

27

29

31

33

%Element to Element function for a square grid with periodic boundary
%conditions .

%pSynopsis: Element to element function for identifying and storing
%information for looking across the faces of an element to it's
%corresponding neighbor.

%Written by Benjamin Davis

% Department of Applied Mathematics

% Naval Postgraduate School

% Monterey , CA 93943-5216

%

% pL = Face of Left Element

% pR = Face of Right Element

% Ls = Number of Left Element

Yo Rs = Number of Right Element

%

%Output: EtoE is a Matrix of of Number of Elements (Row) vs. the
Number

%o0f Sides per element (Four for a square grid). For each element, it

%displays its corresponding neighbor.

function [EtoE] = EtoEfunct(nface, face , Ne)
EtoE = zeros(Ne,4);
for 1=1:nface

pL = face(l,1);

pR = face(l,2);

Ls = face(1,3);

Rs = face(l,4);

if (Ls ~= -6 & Rs ~= -6)
EtoE(Ls,pL) = Rs;
EtoE(Rs,pR) = Ls;

end

end
end

121

N

'S

10

16

~

o

%Function for building the Mass and Differentiation matrices for
%2 -Dimension .
%Written by Benjamin Davis Created: July 2014 Modified Jan 2015

Yo Department of Applied Mathematics

Yo Naval Postgraduate School

Yo Monterey, CA 93943-5216

R e e e T %

function [M,D] = mass_diff2D(L,dL,w)
n = length(L(:,1));

M = zeros(n,n);

D = zeros(n,n);

for i = I:n
for j = 1:n
M(i,j) = ((L(i,:) -«L(j,))sw(1,:) ")
D(i,j) = L(i,:)=dL(j,:) "
end
end
end
R e e e e T %
%Written by Benjamin Davis
% Department of Applied Mathematics
Yo Naval Postgraduate School
% Monterey , CA 93943-5216
% 23 Jan 2015

%Synopsis: Building Matrix Terms in order to solve the equations for
%the 2D Acoustic Wave Equation.
%Output: Matrix elements used to solve the RHS in the RK54 scheme.

function [MAT,MAT _ksi,MAT eta,Je ,A,B,C,D,E,F,G,H] = MatrixTerms2D (Ne,
D_ksi,D_eta,y_eta,y_ksi,x_eta,x_ksi,jac M)
for k = 1:Ne
Je{k} = diag(jac(k,:));
Jeinv {k} = diag(1./jac(k,:));

122

19

N
@

29

N

= D_ksi'+(diag(y_eta(k,:))=*Jeinv
= D_eta '« (diag(y_ksi(k,:))xJeinv
= D_ksi'+(diag(y_eta(k,:))xJeinv *Mxdiag (y_ksi(k,:)))«D_eta;
D_eta '+ (diag(y_ksi(k,:))=+Jeinv *Mzdiag (y_ksi(k,:)))=D_eta;

{k}+M+diag(y_eta(k,:)))*D_ksi;
{k}
{k}
{k}
= D_ksi'+(diag(x_eta(k,:))=+Jeinv{k}+M+diag(x_eta(k,:)))+D_ksi;
{k}
{k}
{k}

*Mxdiag(y_eta(k,:)))+D_ksi;

= D_eta '« (diag(x_ksi(k,:))=*Jeinv *Mxdiag(x_eta(k,:)))+D_ksi;
= D_ksi'+(diag(x_eta(k,:))=*Jeinv +*Mxdiag (x_ksi(k,:)))+D_eta;
= D_eta '+ (diag(x_ksi(k,:))xJeinv *Mxdiag (x_ksi(k,:)))«D_eta;

T O MmN W »>
I

MAT{k} = A-B-C+D+E-F-G+H;
MAT ksi{k} = A-B+E-F;
MAT eta{k} = -C+D-G+H;%%%C+D-G+H

end
end

%Function to build Dx and Dy used to solve the RHS in the RK54 scheme.

%Written by Benjamin Davis

Yo Department of Applied Mathematics
Yo Naval Postgraduate School
Yo Monterey, CA 93943-5216
% 23 Jan 2015
R e e e %
function [Dx,Dy] = DxDy(Ne, ksi_x ,ksi_y ,eta_x ,eta_y,D_ksi,D_eta)
for k = 1:Ne
Dx{k} = diag(ksi_x(k,:))+D_ksi + diag(eta_x(k,:))+D_eta;

diag(ksi_y(k,:))+D_ksi + diag(eta_y(k,:))«D_eta;

g
z
I

end

123

N

16

20

&)

©

11

%Function for building the Surface Jacobians for the faces on a 2D grid
% Written by Benjamin Davis

% Department of Applied Mathematics

% Naval Postgraduate School

Yo Monterey, CA 93943-5216

% 23 Jan 2015

B T T %

function [Sj1,Sj2,S5j3,S5j4] = SurfaceJac2D(Ne,L1,L2,L3,L4,x_ksi,x_eta,
y_ksi,y_eta)
for k = 1:Ne
%Building the surface jacobians for the faces
Sj1_3{k} = sqrt(x_ksi(k,:).”"2 + y_ksi(k,:)."2);
Sj2_41{k} = sqrt(x_eta(k,:)."2 + y_eta(k,:)."2);
%lsolate Surface Jacobians individually for four faces
Sjl{k} = diag(L1+Sj1_3{k}");

Sj3{k} = diag(L3+Sj1_3{k}");
Sj2{k} = diag(L2+Sj2_4{k}");
Sj4{k} = diag(L4xSj2_4{k}");
end
end
R e T e %

%Function to build the element normals for the fours faces on a 2D grid
%Written by Benjamin Davis

% Department of Applied Mathematics

% Naval Postgraduate School

% Monterey, CA 93943-5216

% 23 Jan 2015

0/O '' (y()

function [nx_1,nx_2,nx_3,nx_4,ny_1,ny_2,ny_3,ny_4] = ElementNormals2D (Ne
,L1,L2,L3,L4,x_ksi,x_eta,y_ksi,y_eta,Sjl,Sj2,5j3,Sj4)
for k=1:Ne

%Compute the Normals per element

124

15

21

23

N

'S

10

16

20

nx_1{k}
ny_1{k}

ny_2{k}

end

end

diag (Ll+y_ksi(k,:) './diag(Sjl{k}));
-diag (Ll+x_ksi(k,:) './diag(Sjl{k}));

diag (L2xy_eta(k,:) './diag(Sj2{k}));
-diag(L2+x_eta(k,:) './diag(Sj2{k}));

-diag (L3+y_ksi(k,:) './diag(Sj3{k}));
diag (L3+x_ksi(k,:) "./diag(Sj3{k}));

-diag (L4+y_eta(k,:) './diag(Sj4{k}));
diag(L4«x_eta(k,:) './diag(Sj4{k}));

%Function provided to Professor F.X. Giraldo's MA4245 class.
%Modified by Asst. Professor Jeremy Kozdon and Benjamin Davis

%This function rotates the grid and plots it.
%Written by F.X. Giraldo on 4/2008

Yo
Yo
Yo
Yo
Yo
Yo
Yo
Yo
Yo
Yo
Yo
Yo
Yo
Yo
Yo

Department of Applied Mathematics

Naval Postgraduate School
Monterey, CA 93943-5216

INPUT LIST: coord are the coordinates
intma is the connectivity list

npoin are the number of global points

nelem are the number of elements

ngl is the number of interpolation points in an element

(polynomial order + 1)\

plot_grid is a switch to either plot or not plot
grid_rotation_angle is the grid rotation in degrees

OUTPUT LIST:

coord are the new rotated coordinates: x=coord(:,1)

and y=coord (:,2)

N
[N

40

44

46

[$)]
]

56

function [coord_rotated] = rotate_grid_v2(coord,intma, npoin, nelem,ngl,

plot_grid , grid_rotation_angle)

nop=ngl-1;
coord_rotated=ze
%Rotate Grid

ros(npoin,2) ;

alpha=grid_rotation_anglexpi/180;

for i=1:npoin

xn=cos (alpha)=xc

yn=sin (alpha)=xc

coord_rotated (i

coord_rotated (i

end

%Plot Grid

if (plot_grid ==
x=zeros (5,1)
y=zeros (5,1)

oord(i,1) - sin(alpha)xcoord(i,2);
oord(i,1) + cos(alpha)xcoord(i,2);
,1)=xn;
,2)=yn;

1)

7

figure;
hold on;
for e=1:nelem
for j=1:ngl-1
for i=1:ngl-1
il=intma(e,i,j);
i2=intma(e,i+1,j);
i3=intma(e,i+1,j+1);
i4=intma(e,i,j+1);
x(1)=coord_rotated (il ,1); y(1)=coord_rotated (il ,2);
x(2)=coord_rotated (i2 ,1); y(2)=coord_rotated(i2,2);
x(3)=coord_rotated (i3 ,1); y(3)=coord_rotated (i3 ,2);
x(4)=coord_rotated (i4,1); y(4)=coord_rotated (i4,2);
x(5)=coord_rotated (il ,1); y(5)=coord_rotated (il ,2);
plot_handle=plot(x,y, '-1');
set (plot_handle, 'LineWidth "' ,1.5);
end
end
il=intma(e,1,1);
i2=intma(e,ngl,1) ;
i3=intma (e,ngl,ngl);
i4=intma(e,1,ngl);

x(1)=coord (il ,1); y(1)=coord(il,2);

126

60 x(2)=coord (i2,1); y(2)=coord(i2,2);
x(3)=coord (i3 ,1); y(3)=coord(i3,2);

62 x(4)=coord (i4 ,1); y(4)=coord(i4,2);
x(5)=coord (il ,1); y(5)=coord(il, 2);
64 plot_handle=plot(x,y, "-b");
set (plot_handle, 'LineWidth ' ,2);
66 end
title_text=['Rotated Grid Plot For: Ne = ' num2str(nelem) ', N = '
num?2str (nop)];
68 title ([title_text], 'FontSize ' ,18);
70 xlabel ('X", 'FontSize ',18);
ylabel ('Y', 'FontSize ',18);
7 axis image
end
R i T %

%Function for building the Lagrange Polynomials.
%Written by Benjamin Davis in MA4245 %Created: July 2014

w

Yo Department of Applied Mathematics
5| % Naval Postgraduate School
Yo Monterey, CA 93943-5216
R R % Yo

function [L,dL] = lagrange_basis(x,z)

%Nth order interpolation
n = length(x);

%Length of the equally spaced grid for k = 1:50
h = length(z);

i3|%Initialize the Lagrange Matrix

L = ones(n,h);

i5|dL = zeros(n,h);

%Computation for Lagrange Matrix

17 for k = 1:h
for i = 1:n
19 for j = 1:n

127

21

23

25

31

33

N

'S

[

10

20

if j ~=1 % If j does not equal i
%Equation for the Lagrange Polynomial
L(i k) = (z(k)-x(j))./(x(i)-x(j)) = L(i,k);
for 1 = 1:n
if (1 ~=1) && (1 ~=j)
dl = dl«(z(k)-x(1))./(x(i)-x(1));
end
end
dL(i,k) = dL(i,k) + dl/(x(i)-x(j));
end
end
end
end
end

%Code given to F.X. Giraldo MA4245 Class July 2014

%Used by Ben Davis.

%This code computes the Legendre-Gauss-Lobatto points and weights
%which are the roots of the Lobatto Polynomials.

%Written by F.X. Giraldo on 4/2000

Yo Department of Applied Mathematics

% Naval Postgraduate School

% Monterey, CA 93943-5216

function [xgl,wgl] = legendre_gauss_lobatto (P)
p=P-1;
ph=floor ((p+1)/2);
for i=1:ph
x=cos((2+i-1)xpi/(2xp+1));
for k=1:20
[LO,L0_1,L0_2]=legendre_poly(p,x);
%Get new Newton Iteration
dx=-(1-x72)+L0_1/(-2+x+L0_1 + (1-x"2)xL0_2);
x=x+dx;
if (abs(dx) < 1.0e-20)

128

26

2

@

34

3

&)

a1

<

13

break
end
end
xgl(p+2-i)=x;
wgl(p+2-i) =2/(p+(p+1)+L0"2);
end
%Check for Zero Root
if (p+1 ~= 2+ph)
x=0;
[LO,L0_1,L0_2]=legendre_poly(p,x);
xgl (ph+1)=x;
wgl(ph+1)=2/(p+(p+1)+L0"2);
end
%Find remainder of roots via symmetry
for i=1:ph
xgl(i)=-xgl(p+2-i);
wgl(i)=+wgl(p+2-i);
end

9%Code given to F.X. Giraldo MA4245 Class July 2014
%Used by Ben Davis

%This code computes the Legendre Polynomials and its 1st and 2nd

%derivatives

%

%Written by F.X. Giraldo on 4/2000

Yo Department of Applied Mathematics

Yo Naval Postgraduate School

% Monterey, CA 93943-5216

R e T T %

function [L0,L0_1,L0_2] = legendre_poly(p,x)
L1=0;L1_1=0;L1_2=0;
L0=1;L0_1=0;L0_2=0;
for i=1:p
L2=L1;L2_1=L1_1;L2_2=L1_2;
L1=L0;L1_1=L0_1;L1_2=L0_2;

129

N

a=(2«1-1)/1i;
b=(i-1)/i;
LO=as+x+L1 - b*LZ,’

LO_1=a+(L1 + xxL1_1) - bxL2_1;

L0 _2=a+(2+L1_1 + xx+L1_2)

5 end

- bxL2_2;

130

List of References

[1] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Al-
gorithms, Analysis, and Applications. New York, NY: Springer Science & Busi-
ness Media, 2007, vol. 54.

[2] D. Appelo and T. Hagstrom, “A new discontinuous Galerkin formulation for
wave equations in second order form,” to appear in SIAM Journal of Numeri-
cal Analysis.

[3] E X. Giraldo, “Element-based Galerkin methods,” Class Notes for MA4245:
Mathematical Principles of Galerkin Methods, Department of Applied Math-
ematics, Naval Postgraduate School, August 2014.

[4] B. Gustafsson, H. Kreiss, and J. Oliger, Time Dependent Problems and Difference
Methods. Hoboken, New Jersey: Wiley-Interscience, 1996.

[5] A.Iserles, A First Course in the Numerical Analysis of Differential Equations.
New York, NY: Cambridge University Press, 1996, vol. 44.

[6] R.]. LeVeque, Finite Volume Methods for Hyperbolic Problems, ser. Cambridge
Texts in Applied Mathematics. New York, NY: Cambridge University Press,
2002.

[7] R. Boucher, “Galerkin optimal control,” Ph.D. dissertation, Naval
Postgraduate School, Monterey, California, 2014. [Online]. Available:
http://hdl.handle.net/10945/44526.

[8] U. M. Ascher and C. Greif, A First Course on Numerical Methods. Philadelphia,
PA: Siam, 2011, vol. 7.

[9] J. Stewart, Calculus. Belmont, CA: Cengage Learning, 2011.

[10] J. E. Kozdon and L. C. Wilcox, “Skew-symmetric splitting for Sommerfield
DG,” Thesis Advisor Notes, Department of Applied Mathematics, Naval
Postgraduate School, September 2014.

[11] M. H. Carpenter and C. A. Kennedy, “Fourth-order 2N-storage Runge-Kutta
schemes,” National Aeronautics and Space Administration Langley Research
Center, Hampton, VA, NASA Tech. Rep. 109112, June 1994.

[12] T. Warburton, “A low storage curvilinear discontinuous Galerkin time-
domain method for electromagnetics,” in Electromagnetic Theory (EMTS), 2010
URSI International Symposium on. IEEE, 2010, pp. 996-999.

131

[13] T. Warburton, “A low-storage curvilinear discontinuous Galerkin method

for wave problems,” SIAM Journal on Scientific Computing, vol. 35, no. 4, pp.
A1987-A2012, 2013.

[14] L. C. Wilcox, G. Stadler, C. Burstedde, and O. Ghattas, “A high-order
discontinuous Galerkin method for wave propagation through coupled

elastic-acoustic media,” Journal of Computational Physics, vol. 229, no. 24, pp.
9373-9396, 2010.

[15] A. E. Fischer and J. E. Marsden, “The Einstein evolution equations as a
tirst-order quasi-linear symmetric hyperbolic system, 1,” Communications in
Mathematical Physics, vol. 28, no. 1, pp. 1-38, 1972.

132

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

133

